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Abstract. A general theory of frames on finite
dimensional quaternion Hilbert spaces is
demonstrated along the lines of their complex
counterpart. In this paper we established the
frame decomposition theorem for quaternion
Hilbert space. At the conclusion a perceptive
clarification of why frames are important in
signal transmission is given.
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1. INTRODUCTION

Frames were first introduced by Duffin and
Schaeffer in a study of non-harmonic Fourier
series [1]. However, among many others, the
pioneering works of Daubechies et al. brought
the proper attention to frames [2, 3]. Wavelets
and coherent states of quantum optics are
specific classes of continuous frames [4]. The
study of frames has exploded in recent years,
partly be- cause of their applications in digital
signal processing [5, 6] and other areas of
physical and engineering problems. In particular,
they are an integral part of time frequency
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analysis. In this note we are primarily interested
in frames on finite dimensional quaternion
Hilbert spaces. There has been a constant surge
in finding finite tight frames, largely as a result
of several important applications such as internet
coding, wireless communication, quantum
detection theory, and many more [7, 8, 9, 5, 10].
It is crucial to find a specific class of frame to fit
to a specific physical problem, because there is
no universal class of frame that fit to all
problems. As technology advances, physicists
and engineers will face new problems and
thereby our search for tools to solve them will
continue. A Separable Hilbert space possesses
an orthonormal basis and each vector in the
Hilbert space can be uniquely written in terms of
this orthonormal basis. Despite orthonormal
bases are hard to find, this uniqueness restricted
flexibility in applications and pleaded for an
alternative. As a result frames entered to replace
orthonormal bases. Frames are classes of vectors
in Hilbert spaces. In a finite dimensional Hilbert
space a typical frame possesses more vectors
than the dimension of the space, and thereby
each vector in  the space can
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have infinitely many representations with respect
to the frame. This redundancy of frames is the
key to their success applications. The role of
redundancy varies according to the requirements
of the applications at hand. In fact, redundancy
gives greater design flexibility which allows
frames to be constructed to fit a particular
problem in a manner not possible by a set of
linearly independent vectors [4, 5, 2, 11]. Hilbert
spaces can be defined over the fieldsR , the set
of all real numbers,C the set of all complex
numbers, and H, the set of all quaternions only
[12]. The fields R and C are associative and
commutative and the theory of functional
analysis is a well formed theory over real and
complex Hilbert spaces. But the quaternions
form a non-commutative associative algebra and
this feature highly restricted mathematicians to
work out a well-formed theory of functional
analysis on quaternion Hilbert spaces. Further,
due to the non-commutativity there are two
types of Hilbert spaces on quaternions, called
right quaternion Hilbert space and left
quaternion Hilbert space. In assisting the study
of frames the functional analytic properties of
the underlying Hilbert space are essential. In the
sequel we shall prove the necessary functional
analytic properties as needed. This paper is a
short version of [13]. For an enhanced
explanation we refer the reader to [13].

2. QUATERNION ALGEBRA

In this section we shall define quaternions and
some of their properties as needed here. For one
may consult [12, 14, 15].

2.1. Quaternions. Let H denote the field of
quaternions. Its elements are of the form q =
X o+ x10 + x5 j + x3k, where x¢, x1, xpand
x zare real numbers, and i,j,k are imaginary
units such that %= j?= k?=-1,ij =
—ji = k,jk = —kj = i and ki = —ik = j.
The quaternionic conjugate of qis defined to
be § = x¢— x1i— %3] — x3k. Quaternions
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can also be represented by using 2 x 2 complex
matrices. It can be written as the linear
combination of the matrices

0= (3 O im=( )

. _(0 -1 . _ (i 0
—ie=( o) im=(, )
where 0y, 0, and g;are the usual Pauli matrices.

In this notations the quaternions can be written
as (2.1) q = x909 + ix.0

with xg € R,x = (xq,%,,%x3) € R3and

o = (0y,— 0,,03). The quaternionic imaginary
units are identified as, i =v-10; ,j =
V=10, ,k =+/—103 . Thereby q = x40, +
ix,01 — ix,0, + ix303and

(%o tix3 —x; + ixl)
(22) q= <x2 + ixy  xp— ix3

and § = qT(matrix adjoint). Introducing the
polar coordinates:

Xog=1cosf

X, = rsin@singcosip
X, = rsinfsingsiny
X3 = rsinfsing cosy

where 1 € [0,2),0,¢ € [0,m], and Y €
[0, 21), we may write

(23) q = A(r)ea(@)

where A(r) = ro, and
- cos sin pe¥
(24) o(@) =< e, e )
sin pe —cos @

The matrices A(r) and o(#) satisfy the
conditions,

(2.5) A(r) = AN, 0({)? =0y,

with
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2.6) s = o (@), [A(r),0(@)] = 0,

where [A,B] = AB — BA is called Lie
bracket.

Note that |q|? :==qq = r? o, .Thereby |q|* =
(x2 + x? + x2+x2)I,defines a real norm on
H and [, stands for the 2 X 2 identity matrix.

2.2. Properties of Quaternions: The quaternion
product allows the following properties.
For q,r,s € H,we have

(a) q(rs) = (qr)s (associative)
(b)q(r + s5) = qr + gs.

(c) For each g # 0, there exists r such that
qgr = 1

(d)Ifgr = gsthenr = swheneverq # 0
The quaternion product is not commutative

3. FRAMES IN QUATERNION HILBERT
SPACE

Definition 3.1. Let V4 is a vector space under
left multiplication by quaternionic scalars, where
H stands for the quaternion algebra. For
f,g9,h €VEandq € H, the inner product

(.. : Vk x VEk > Hsatisfies  the  following
properties:

@ {flg) = (glf)

®) IfNI?=(fIf)>O0unless f = 0, a real
norm

©(flg +h=(flg)+ {fIh)
(d){aqflg) = qa{flg)
e (flag) = (flg)q.

Note that the space Vjis together with (.. )is a

separable Hilbert space. Properties of left
quaternion Hilbert spaces as needed here can be
listed as follows: For f,g, € V{ and p,q € H,
we have
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@pf +q9 € Vi
bp(f +9) = pf + g
(©) (pa)f = r(af)
D@+ Of =pf + af.

Proposition 3.2. [12] (Schwartz inequality)
(FlaXglf) < IIfIZ llgll?, forall f, g, € Vi

Definition 3.3. (Basis) Let Vibe a finite
dimensional left quaternion Hilbert space,
equipped with an inner product (.|.) which
wechoose to be linear in the second entry.
A sequence {e; )i, is a basis for V} if the
following two conditions are satisfied:

(1) Vi = left span{e;}i=,
(2) {ex }y=4is a linearly independent set.

We now introduce the frames on finite
dimensional left quaternion Hilbert spaces. We
shall show that the complex treatment adapt to
the quaternions as well. In this paper left span
means left span over the quaternion scalar
field, H. We shall also prove the functional
analytic properties for quaternions as needed
here, and these proofs are the adaptation of the
proofs of the complex cases given in [16]. The
theory of frames offered here, more or less,
follows the lines of [5].

Definition 3.4. (Frames) A countable family of
elements {fy }xe; in Viis a frame for Vi if
there exist constants A, B > Osuch that

(3.1 AlflI? < Zkel(f1fi)1? <BIfIZ,
forall f € V.

The numbers A and B are called frame bounds.
They are not unique. The optimal lower frame
bound is the supremum over all lower frame
bounds, and the optimal upper frame bound is
the infimum over all upper frame bounds. Note
that the optimal frame bounds are actually the
frame bounds. A frame is said to be normalized
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if]| fxll = 1, for allk € I. In this note we shall
only consider finite frames {f;}y=;,m € N.
With this restriction, Schwartz inequality shows
that

(3.2) ZRLAl{fIfil? < ZREallfill® N FII%,

for all f € V4From (3.2) it is clear that the
upper frame condition is always satisfied with
A=Y NIfl
condition in (3.1) to be satisfied, it is necessary
that left span {fi,}7*, = Vi Let us see this in
the following.

In order for the lower

Proposition 3.5. Let {f;};=,be a sequence in
VE.Then {fidieyis  a  frame  for

left span {fiJgz1.

Corollary 3.6. A family of elements {f; };=,in

Viis a frame for VE if and only

if leftspan {fi}7e, = V§.

Proof. Suppose that {f}jL, is a frame for
Vi Then there exist A,B > 0 such that

(3.3)  AllfII? < ZRLf1fi)l? < BISII?

for all f € V5. If there exists f € V}; such that
f € leftspan{fi}g=o. Then f # Y¥i_;cy fi for
all sequences {c,}pt, € H.That is,||f]|* #

ialck [Pllfill> for any sequence {ci}jeq ©

Tk _
H.Set o= <\/‘ ||fk||>€Hfor all k=
1’2’...’m
Thereby

I # 2|{r L e
=1
k=1

BIIfII2 IfII?6y  (3.3),
which is a contradlctlon. Thereby Vi €

leftspan{fi}i=,. Clearly leftspan{fi}i=, S
V. Thereby the conclusion follows.
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Conversely suppose that leftspan{fi}i=, =
VE. From proposition (3.5) {fi}i,is a frame
for eftspan{fi}i=, , thereby {fi}r=1is a frame
forV. O

From the above corollary it is clear that a frame
is an over complete family of vectors in a finite
dimensional Hilbert space.

3.1. Frame operator in left quaternion Hilbert
space.

3.1.1. Operators on left quaternion Hilbert
spaces. Let O : VE — Vkbe a quaternion linear
operator. In this case, the operators always act
from the left as O|f) and the scalar multiple of
the operator is taken from the left as qO. Further
the operators obey the following rules:

@) Olaf) = qIf).
(ii){f10g) = (0Tf|g); OTis the adjoint of 0.

(i) (qO)If) = Olqf).

For a detail explanation we refer the reader to
[12].

Definition 3.7. [12] Let V£ be any
leftquarternion Hilbert space. A mapping S :

VE — Vikis said to be linear if, S(af + Bg) =
aS(f) + BS(g);forall f,g € Vi and a, B € H.

Definition 3.8. [12] A linear operator S : V5 —
Vkis said to be bounded if, ||Sf|| < Kf,forsome
constant K > 0 and all € V% .

Definition 3.9. [12](A4djoint operator)

Let S : V4 — Vibe a bounded linear operator
on a left quaternion Hilbert space. We define its
adjoint to be the operator ST : V% — V}thathas
the property

3.4)(fISg) = (STflg);

forall f, g € V4.

Definition 3.10. [ 12](Self-adjoint operator)
Let V% be aleft quaternion Hilbert space. A
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bounded linear operator S on V} is called self-
adjoint,if ST =S,

Analogous to commutative case, we now
provide elementary results that hold for left
quaternion space, which is non commutative.

Lemma 3.11. Let U}, Vibe finite dimensional
left quaternion Hilbert spaces and S : U — VE
be a linear mapping then

dimRg + dimNg = dimUF
where Rg = image of S,Ns := ker S.

Lemma 3.12. Let S : Us — Vibe a linear
mapping. S is one to one if and only if Ng = {0}.

Lemma 3.13. Let Uj, Viare finite dimensional
left quaternion Hilbert spaces with
samedimension. Let S : Us — Vibea
linearmapping. If S is one to one then S is onto.

Lemma 3.14. (Pythagoras' law) Suppose that

f and g is an arbitrary pair of orthogonal vectors
in the left quaternion Hilbert space V5. Then we
have Pythagoras' formula

(3.5) If +gl*2=1F17+1lgll*.

Lemma 3.15. Let T : H™ — V} be a linear

mapping and TT : V4 — H™be its
Tt

ker Tand R,+ := range of TT.
For detail proofs of the above lemmas we refer
the reader to [13].

adjointoperator. Then N = R:;, where Ny :=

3.1.2. Frame operators. Consider now a left
quaternion Hilbert space, V/ with a frame
{fi}x=, and define a linear mapping

T: H™ — V) by

(3.6) T {ck}k=1 = Zhe1Ckfk, Ck € H.
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T is usually called the pre-frame operator or the
synthesis operator. The adjoint operator
Tt: V¥ — H™ by

(3.7) TTf = {(flfi)lies

is called the analysis operator. By composing
T with its adjoint we obtain the frame operator
S: Vk — Viby

3.8) Sf = TTTf = ZReolfIfid fi

Note that in terms of the frame operator, for
fevi
(SFIf) = Ck=alF1ficd il )

SXAANAN
k=1

= D KfIf.
k=1

Thereby

(B9 (SFIfY = ZReal{fIfidl? . f € Vi .

A frame {f; }j=, is tight if we can choose
A = B in the definition (3.4), hence (3.1)

gives Xr= 1 [{(f1fi)1? = Allf|I% for all f € V5.
Thereby (Sf|f) = Allf||?for all f € VL.

Theorem 3.16. (Frame decomposition
theorem)Let {fi. Yo be a frame for Viwith
frame operatorS. Then

(1) S is self-adjoint and invertible.
(2) Every f € Vi can be represented as

£ =D F1ST i fi= ) (IS i
k=1 k=1

(3) If f € Vihas the representation
f = Yre1 Crfr for some scalar coefficients
{ckYk=1then
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Dlel? = ) KAl
k=1 k=1

+ ) e = {FIS 7 fidl?
k=1

Proof. (1) S : Vi — Viby
Sf = TTf = S slfIfi) fiofor all f € V.
Now

st=(arHt = (tHitt = 77t = &5,
It follows that S is self-adjoint. We have
ker S ={f: Sf =0}. Letf € kerS, then
Sf = 0. Therefore

0 =(SfIf)
= (Xx=1f1fi) fiel )

m

= D KFIfP.
k=1

Thereby XL 11(ffi)|* = 0. Since {fi}iz,
be a frame for Viby definition (3.4),

ANFIP < ) KFIFI < BIFIZ,
k=1

forall f € V.

Hence Al|f||?> <0 < B||f||? forall f €V,
and A,B > 0.So ||f]|* = 0. Thereby f = 0,
for all f € Vi, it follows that N ¢ = { 0}. Hence
S is one to one. Since V}is of the
finitedimension, from the lemma (3.13) S is
onto. Therefore S is invertible.

(2) If S is self-adjoint then S~ is self-adjoint.
For, Consider
St =(sH =5

Thereby S~ is self-adjoint. If the function S :
VE — Vi is linear and bijection then S™1 is
linear. For, since S is onto, S™1 : Vi — VE.
Let f,g € V£ then there exists k, h € Visuch
that S™1(f) = kand S71(g) = h.Thereby
f = S(k)and g = S(h).
Leta, f € H, then

S™Haf +B g9) = S7H(aS(k) + BS(h))
= S7Y(S(ak + Bh))

University of Jaffna

Track: Pure Science

— ak + Bh
= aS7'(f) + BS7'(9)
Thereby for all f,g € Vi anda, € H,
S af +B9)= aST' () + BSTH(g).

Hence S~1 is linear.
Let f, € V/; then

f =5SS7'f
= TTTS™f
= YRe (ST I fie) fi
= Z{f S fi

= Yo F IS i) fr

as S~ 1 is self adjoint. Thereby for every € V4,

(3.10) f=ZRealfIST i) fi

Similarly we have

f=S7Sf
=STITTf
= STH @RS Ifie) fid)
= Xk=1 ST IfiMfid)
= Yre1(f1fi) ST i
as S™1 is linear. Thereby for every f € Vi
(3.11) f =Xl f1fi) ST i

From (3.10) and (3.11), for every f € V%,

£= IS = D (FIfD S
k=1 k=1

(3) Let f € Vi, from corollary (3.6)
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f =X7 ¢k fr, for some ¢, € H
From previous part,

(3.12)  f =Xikickfi = ZRelfIS7 ) fie

Hence

(3.13)  XRiilox = {fISTHi) fi = 0.

Thereby Y=, dy fi. = 0, for some

di = e —(fIST fi) € H.
From (3.6), pre-frame operator T : H™ — V},
is defined by

(3.14) T{dk};cn=1 = Z;cn=1 dy fk,

where {dj}ieq = {c i —{FIS T fillies -
We have Nr = {{d; kL [T{d}k=1 = 0},
therefore {d; }j=; € Nr.

From lemma (3.15) Ny = Ry , then

(3.15) {ei i —Uf IS )iy € Ryt

From (3.6) and (3.7) we have
TH: Vi — H™ by TTf = {{fIfi)}ie; and
S:VE — VE by

Sf =TT = ) (fIfid i
k=1

Hence TT(S71f) = (ST fIfi) 31, .
Therefore
USTHIfi)deer € Ryt .
Since S~ is self adjoint,
USTHIfilRer = UFIST i ies.
Hence
(3.16) {{fIS™ fi)lies € Ryt

Now we can write,
{edier = {adie— IS T AN RS
+ {fIST ik
From (3.15), (3.16) and lemma (3.14), it follows
that
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[(FIS™ i)l

,r
ﬂ‘
D=

lex = (FIS T2 fio)I?

Theorem (3.16) is one of the most important
results about frames, and

F= D IS fe= ) (FIfd S f
k=1 k=1

is called the frame decomposition.

Note that if {f} }y=is a frame but not a
basis,there exists non-zero sequences

{91 }k=1such that Y7, gy fi = 0.Thereby f €
Vi can be written as

f= YIS O fe+ ) i
k=1 k=1
= D (157 + 9
k=1

showing that f has many representations as
superposition of the frame elements.

Corollary 3.17.4Assume that {f } =, is
a basis for Vi.Then there exists a unique
family {g, }=, in Vi such that

B17) f = Zi=1{f19k) fr

for all f € V. In terms of the frame
operator,{gidi=1 = {S ™ fitk=1-
Furthermore(fj|gk) = §j k-

4. CONCLUSION

We conclude by giving a perceptive clarification
of why frames are important in signal
transmission. Let us assume that we want to
transmit the signal f belonging to a left
quaternion Hilbert space from a transmitter A to
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areceiverR. If both A and R have knowledge of

frame {fj,}iL for V%, this can be done if A
transmits the frame coefficients {(f|S ™ fi )i y;
based on knowledge of these numbers, the
receiver R can reconstruct the signal f using the
frame decomposition. Now assume that R
receives a noisy signal, meaning a

perturbation {(f|S™1f) + ¢}t of the correct
frame coefficients. Based on the received
coefficients, R will assert that the transmitted
signal was

D CFIST i)+ e fe
k=1

= i(fls_lfk)fk + i cr fr
=1

k=1
=f+ Xk Ck fr

this differs from the correct signal f by the noise
Yhe1 Ck fi-Minimizing this noise for various
signals with different types of noises has been a
hot topic in signal processing. We shall touch
this issue in the future. For now, if {fi }j=1

is over complete, parts of the noise contribution
might add up to zero and cancel. This will never
happen if {f} }=; is an orthonormal basis. In

that case
m 2 m
D =D leel
k=1 k=1

so each noise contribution will make the
reconstruction worse.
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