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The above can be recapitulated in one line as

〈∆Q〉〈∆P 〉 =
1
2
|〈[Q,P ]〉| =

1
2
.

That is, the RQCS |γq〉 saturate the Heisen-
berg uncertainty and, due to [Q, P ] = IIH, the
RQCS are minimum uncertainty states and are
intelligent states too, which is in complete anal-
ogy with the canonical CS of CQM.

6. Conclusion

Using the general scheme of CS quantization
the quaternion field is quantized in [1]. Us-
ing the annihilation operator, Aq, and the cre-
ation operator, Aq, in [1] the momentum op-
erator, P , and the position operator, Q, are
obtained as self-adjoint operators in a quater-
nionic Hilbert space. For the RQCS, and for
the operators P and Q, in this article, we have
examined the Heisenberg uncertainty princi-
ple. In fact, as expected, the RQCS saturated
the Heisenberg uncertainty, and thereby they
formed a set of intelligent states. Further, since
the operators P and Q satisfied the commuta-
tor relation [Q,P ] = IIH, we have presented
the RQCS as minimum uncertainty states. In
conclusion, even though the noncommutativity
of quaternions caused technical difficulties, in
most part, the quantization procedure and the
Heisenberg principle of quaternions followed its
complex counterpart. As the quantization and
the Heisenberg principle play an important role
in complex quantum mechanics, the material
presented in this manuscript can also play a
vital role in the quaternionic quantum mechan-
ics.
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Abstract. A general theory of frames on finite 
dimensional quaternion Hilbert spaces is 
demonstrated along the lines of their complex 
counterpart. In this paper we established the 
frame decomposition theorem for quaternion 
Hilbert space. At the conclusion a perceptive 
clarification of why frames are important in 
signal transmission is given. 

Key words: Frames, quaternions, quaternion 
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1. INTRODUCTION 

Frames were first introduced by Duffin and 
Schaeffer in a study of non-harmonic Fourier 
series [1].  However, among many others, the 
pioneering works of Daubechies et al. brought 
the proper attention to frames [2, 3]. Wavelets 
and coherent states of quantum optics are 
specific classes of continuous frames [4]. The 
study of frames has exploded in recent years, 
partly be- cause of their applications in digital 
signal processing [5, 6] and other areas of 
physical and engineering problems. In particular, 
they are an integral part of time frequency 

analysis. In this note we are primarily interested 
in frames on finite dimensional quaternion 
Hilbert spaces. There has been a constant surge 
in finding finite tight frames, largely as a result 
of several important applications such as internet 
coding, wireless communication, quantum 
detection theory, and many more [7, 8, 9, 5, 10]. 
It is crucial to find a specific class of frame to fit 
to a specific physical problem, because there is 
no universal class of frame that fit to all 
problems. As technology advances, physicists 
and engineers will face new problems and 
thereby our search for tools to solve them will 
continue. A Separable Hilbert space possesses 
an orthonormal basis and each vector in the 
Hilbert space can be uniquely written in terms of 
this orthonormal basis. Despite orthonormal 
bases are hard to find, this uniqueness restricted 
flexibility in applications and pleaded for an 
alternative. As a result frames entered to replace 
orthonormal bases. Frames are classes of vectors 
in Hilbert spaces. In a finite dimensional Hilbert 
space a typical frame possesses more vectors 
than the dimension of the space, and thereby 
each vector in the space can 
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have infinitely many representations with respect 
to the frame. This redundancy of frames is the 
key to their success applications. The role of 
redundancy varies according to the requirements 
of the applications at hand. In fact, redundancy 
gives greater design flexibility which allows 
frames to be constructed to fit a particular 
problem in a manner not possible by a set of 
linearly independent vectors [4, 5, 2, 11]. Hilbert 
spaces can be defined over the fieldsℝ , the set 
of all real numbers,ℂ the set of all complex 
numbers, and 𝐻𝐻𝐻𝐻, the set of all quaternions only 
[12]. The fields ℝ and ℂ are associative and 
commutative and the theory of functional 
analysis is a well formed theory over real and 
complex Hilbert spaces. But the quaternions 
form a non-commutative associative algebra and 
this feature highly restricted mathematicians to 
work out a well-formed theory of functional 
analysis on quaternion Hilbert spaces. Further, 
due to the non-commutativity there are two 
types of Hilbert spaces on quaternions, called 
right quaternion Hilbert space and left 
quaternion Hilbert space. In assisting the study 
of frames the functional analytic properties of 
the underlying Hilbert space are essential. In the 
sequel we shall prove the necessary functional 
analytic properties as needed. This paper is a 
short version of [13]. For an enhanced 
explanation we refer the reader to [13]. 

2. QUATERNION ALGEBRA 

In this section we shall define quaternions and 
some of their properties as needed here. For one 
may consult [12, 14, 15]. 

2.1. Quaternions. Let 𝐻𝐻𝐻𝐻 denote the field of 
quaternions. Its elements are of the form  𝒒𝒒𝒒𝒒 =
 𝑥𝑥𝑥𝑥 0 + 𝑥𝑥𝑥𝑥1𝑖𝑖𝑖𝑖 +  𝑥𝑥𝑥𝑥2 𝑗𝑗𝑗𝑗 +  𝑥𝑥𝑥𝑥3𝑘𝑘𝑘𝑘,  where 𝑥𝑥𝑥𝑥0,  𝑥𝑥𝑥𝑥1,  𝑥𝑥𝑥𝑥2and 
𝑥𝑥𝑥𝑥 3are real numbers, and 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗, 𝑘𝑘𝑘𝑘 are imaginary 
units such that 𝑖𝑖𝑖𝑖2 =  𝑗𝑗𝑗𝑗2 =  𝑘𝑘𝑘𝑘2 = −1, 𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗 =
 −𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖 =  𝑘𝑘𝑘𝑘, 𝑗𝑗𝑗𝑗𝑘𝑘𝑘𝑘 =  −𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗 =  𝑖𝑖𝑖𝑖 and 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 =  −𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 =  𝑗𝑗𝑗𝑗. 
The quaternionic conjugate of 𝒒𝒒𝒒𝒒 𝑖𝑖𝑖𝑖s defined to 
be  𝒒𝒒𝒒𝒒 ̅  =  𝑥𝑥𝑥𝑥 0 − 𝑥𝑥𝑥𝑥1𝑖𝑖𝑖𝑖 −  𝑥𝑥𝑥𝑥2 𝑗𝑗𝑗𝑗 − 𝑥𝑥𝑥𝑥3𝑘𝑘𝑘𝑘. Quaternions 

can also be represented by using 2 × 2 complex 
matrices. It can be written as the linear 
combination of the matrices 

𝜎𝜎𝜎𝜎0 = (1 0
0 1) ,    𝑖𝑖𝑖𝑖𝜎𝜎𝜎𝜎1 = (0 𝑖𝑖𝑖𝑖

  𝑖𝑖𝑖𝑖 0) 

−𝑖𝑖𝑖𝑖𝜎𝜎𝜎𝜎2 = ( 0 −1
  1 0 ), ,         𝑖𝑖𝑖𝑖𝜎𝜎𝜎𝜎3 = ( 𝑖𝑖𝑖𝑖 0

 0 −𝑖𝑖𝑖𝑖) 

where 𝜎𝜎𝜎𝜎1,  𝜎𝜎𝜎𝜎2 and 𝜎𝜎𝜎𝜎3are the usual Pauli matrices. 
In this notations the quaternions can be written 
as         (2.1)     𝑞𝑞𝑞𝑞 =  𝑥𝑥𝑥𝑥0𝜎𝜎𝜎𝜎0  +  𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥 . 𝜎𝜎𝜎𝜎  

with   𝑥𝑥𝑥𝑥0  ∈  ℝ , 𝑥𝑥𝑥𝑥 =  (𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥2, 𝑥𝑥𝑥𝑥3) ∈  ℝ3and 
𝜎𝜎𝜎𝜎 = (𝜎𝜎𝜎𝜎1, − 𝜎𝜎𝜎𝜎2,𝜎𝜎𝜎𝜎3 ). The quaternionic imaginary 
units are identified as, 𝑖𝑖𝑖𝑖 = √−1𝜎𝜎𝜎𝜎1 ,  𝑗𝑗𝑗𝑗 =
√−1𝜎𝜎𝜎𝜎2 , 𝑘𝑘𝑘𝑘 = √−1𝜎𝜎𝜎𝜎3 . Thereby 𝑞𝑞𝑞𝑞 =  𝑥𝑥𝑥𝑥0𝜎𝜎𝜎𝜎0  +
 𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥1𝜎𝜎𝜎𝜎1  −  𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥2𝜎𝜎𝜎𝜎2  +  𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥3𝜎𝜎𝜎𝜎3and  

(2.2)    𝑞𝑞𝑞𝑞 = (𝑥𝑥𝑥𝑥0  +  𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥3 −𝑥𝑥𝑥𝑥2  +  𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥1
𝑥𝑥𝑥𝑥2  +  𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥1 𝑥𝑥𝑥𝑥0 −  𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥3

) 

 

and �̅�𝑞𝑞𝑞  =  𝑞𝑞𝑞𝑞†(matrix adjoint). Introducing the 
polar coordinates: 

   𝑥𝑥𝑥𝑥 0 =  𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝜃𝜃 

                             𝑥𝑥𝑥𝑥1  =  𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝜃𝜃𝜃𝜃 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝜓𝜓𝜓𝜓 

                             𝑥𝑥𝑥𝑥2  =  𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝜃𝜃𝜃𝜃 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝜓𝜓𝜓𝜓 

                              𝑥𝑥𝑥𝑥3  =  𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝜃𝜃𝜃𝜃 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝜓𝜓𝜓𝜓 

where  𝑟𝑟𝑟𝑟 ∈  [0, ∞), 𝜃𝜃𝜃𝜃, 𝜑𝜑𝜑𝜑 ∈  [0, 𝜋𝜋𝜋𝜋], and  𝜓𝜓𝜓𝜓 ∈
[0, 2𝜋𝜋𝜋𝜋), we may write  

(2.3)     𝑞𝑞𝑞𝑞 =  𝐴𝐴𝐴𝐴(𝑟𝑟𝑟𝑟)𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜎𝜎𝜎𝜎(�̃�𝑠𝑠𝑠) 

where 𝐴𝐴𝐴𝐴(𝑟𝑟𝑟𝑟)  =  𝑟𝑟𝑟𝑟𝜎𝜎𝜎𝜎0 and  

(2.4)   𝜎𝜎𝜎𝜎(�̃�𝑠𝑠𝑠)  = ( 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑𝜑𝜑 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑𝑒𝑒𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 −𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑𝜑𝜑 ) 

The matrices 𝐴𝐴𝐴𝐴(𝑟𝑟𝑟𝑟) and 𝜎𝜎𝜎𝜎(�̃�𝑠𝑠𝑠) satisfy the 
conditions,   

 (2.5)    𝐴𝐴𝐴𝐴(𝑟𝑟𝑟𝑟) =  𝐴𝐴𝐴𝐴(𝑟𝑟𝑟𝑟)†, 𝜎𝜎𝜎𝜎(�̃�𝑠𝑠𝑠)2 = 𝜎𝜎𝜎𝜎0 , 

with  
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have infinitely many representations with respect 
to the frame. This redundancy of frames is the 
key to their success applications. The role of 
redundancy varies according to the requirements 
of the applications at hand. In fact, redundancy 
gives greater design flexibility which allows 
frames to be constructed to fit a particular 
problem in a manner not possible by a set of 
linearly independent vectors [4, 5, 2, 11]. Hilbert 
spaces can be defined over the fieldsℝ , the set 
of all real numbers,ℂ the set of all complex 
numbers, and 𝐻𝐻𝐻𝐻, the set of all quaternions only 
[12]. The fields ℝ and ℂ are associative and 
commutative and the theory of functional 
analysis is a well formed theory over real and 
complex Hilbert spaces. But the quaternions 
form a non-commutative associative algebra and 
this feature highly restricted mathematicians to 
work out a well-formed theory of functional 
analysis on quaternion Hilbert spaces. Further, 
due to the non-commutativity there are two 
types of Hilbert spaces on quaternions, called 
right quaternion Hilbert space and left 
quaternion Hilbert space. In assisting the study 
of frames the functional analytic properties of 
the underlying Hilbert space are essential. In the 
sequel we shall prove the necessary functional 
analytic properties as needed. This paper is a 
short version of [13]. For an enhanced 
explanation we refer the reader to [13]. 

2. QUATERNION ALGEBRA 

In this section we shall define quaternions and 
some of their properties as needed here. For one 
may consult [12, 14, 15]. 

2.1. Quaternions. Let 𝐻𝐻𝐻𝐻 denote the field of 
quaternions. Its elements are of the form  𝒒𝒒𝒒𝒒 =
 𝑥𝑥𝑥𝑥 0 + 𝑥𝑥𝑥𝑥1𝑖𝑖𝑖𝑖 +  𝑥𝑥𝑥𝑥2 𝑗𝑗𝑗𝑗 +  𝑥𝑥𝑥𝑥3𝑘𝑘𝑘𝑘,  where 𝑥𝑥𝑥𝑥0,  𝑥𝑥𝑥𝑥1,  𝑥𝑥𝑥𝑥2and 
𝑥𝑥𝑥𝑥 3are real numbers, and 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗, 𝑘𝑘𝑘𝑘 are imaginary 
units such that 𝑖𝑖𝑖𝑖2 =  𝑗𝑗𝑗𝑗2 =  𝑘𝑘𝑘𝑘2 = −1, 𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗 =
 −𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖 =  𝑘𝑘𝑘𝑘, 𝑗𝑗𝑗𝑗𝑘𝑘𝑘𝑘 =  −𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗 =  𝑖𝑖𝑖𝑖 and 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 =  −𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 =  𝑗𝑗𝑗𝑗. 
The quaternionic conjugate of 𝒒𝒒𝒒𝒒 𝑖𝑖𝑖𝑖s defined to 
be  𝒒𝒒𝒒𝒒 ̅  =  𝑥𝑥𝑥𝑥 0 − 𝑥𝑥𝑥𝑥1𝑖𝑖𝑖𝑖 −  𝑥𝑥𝑥𝑥2 𝑗𝑗𝑗𝑗 − 𝑥𝑥𝑥𝑥3𝑘𝑘𝑘𝑘. Quaternions 

can also be represented by using 2 × 2 complex 
matrices. It can be written as the linear 
combination of the matrices 

𝜎𝜎𝜎𝜎0 = (1 0
0 1) ,    𝑖𝑖𝑖𝑖𝜎𝜎𝜎𝜎1 = (0 𝑖𝑖𝑖𝑖

  𝑖𝑖𝑖𝑖 0) 

−𝑖𝑖𝑖𝑖𝜎𝜎𝜎𝜎2 = ( 0 −1
  1 0 ), ,         𝑖𝑖𝑖𝑖𝜎𝜎𝜎𝜎3 = ( 𝑖𝑖𝑖𝑖 0

 0 −𝑖𝑖𝑖𝑖) 

where 𝜎𝜎𝜎𝜎1,  𝜎𝜎𝜎𝜎2 and 𝜎𝜎𝜎𝜎3are the usual Pauli matrices. 
In this notations the quaternions can be written 
as         (2.1)     𝑞𝑞𝑞𝑞 =  𝑥𝑥𝑥𝑥0𝜎𝜎𝜎𝜎0  +  𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥 . 𝜎𝜎𝜎𝜎  

with   𝑥𝑥𝑥𝑥0  ∈  ℝ , 𝑥𝑥𝑥𝑥 =  (𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥2, 𝑥𝑥𝑥𝑥3) ∈  ℝ3and 
𝜎𝜎𝜎𝜎 = (𝜎𝜎𝜎𝜎1, − 𝜎𝜎𝜎𝜎2,𝜎𝜎𝜎𝜎3 ). The quaternionic imaginary 
units are identified as, 𝑖𝑖𝑖𝑖 = √−1𝜎𝜎𝜎𝜎1 ,  𝑗𝑗𝑗𝑗 =
√−1𝜎𝜎𝜎𝜎2 , 𝑘𝑘𝑘𝑘 = √−1𝜎𝜎𝜎𝜎3 . Thereby 𝑞𝑞𝑞𝑞 =  𝑥𝑥𝑥𝑥0𝜎𝜎𝜎𝜎0  +
 𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥1𝜎𝜎𝜎𝜎1  −  𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥2𝜎𝜎𝜎𝜎2  +  𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥3𝜎𝜎𝜎𝜎3and  

(2.2)    𝑞𝑞𝑞𝑞 = (𝑥𝑥𝑥𝑥0  +  𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥3 −𝑥𝑥𝑥𝑥2  +  𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥1
𝑥𝑥𝑥𝑥2  +  𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥1 𝑥𝑥𝑥𝑥0 −  𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥3

) 

 

and �̅�𝑞𝑞𝑞  =  𝑞𝑞𝑞𝑞†(matrix adjoint). Introducing the 
polar coordinates: 

   𝑥𝑥𝑥𝑥 0 =  𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝜃𝜃 

                             𝑥𝑥𝑥𝑥1  =  𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝜃𝜃𝜃𝜃 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝜓𝜓𝜓𝜓 

                             𝑥𝑥𝑥𝑥2  =  𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝜃𝜃𝜃𝜃 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝜓𝜓𝜓𝜓 

                              𝑥𝑥𝑥𝑥3  =  𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝜃𝜃𝜃𝜃 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝜓𝜓𝜓𝜓 

where  𝑟𝑟𝑟𝑟 ∈  [0, ∞), 𝜃𝜃𝜃𝜃, 𝜑𝜑𝜑𝜑 ∈  [0, 𝜋𝜋𝜋𝜋], and  𝜓𝜓𝜓𝜓 ∈
[0, 2𝜋𝜋𝜋𝜋), we may write  

(2.3)     𝑞𝑞𝑞𝑞 =  𝐴𝐴𝐴𝐴(𝑟𝑟𝑟𝑟)𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜎𝜎𝜎𝜎(�̃�𝑠𝑠𝑠) 

where 𝐴𝐴𝐴𝐴(𝑟𝑟𝑟𝑟)  =  𝑟𝑟𝑟𝑟𝜎𝜎𝜎𝜎0 and  

(2.4)   𝜎𝜎𝜎𝜎(�̃�𝑠𝑠𝑠)  = ( 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑𝜑𝜑 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝜑𝜑𝜑𝜑𝑒𝑒𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 −𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑𝜑𝜑 ) 

The matrices 𝐴𝐴𝐴𝐴(𝑟𝑟𝑟𝑟) and 𝜎𝜎𝜎𝜎(�̃�𝑠𝑠𝑠) satisfy the 
conditions,   

 (2.5)    𝐴𝐴𝐴𝐴(𝑟𝑟𝑟𝑟) =  𝐴𝐴𝐴𝐴(𝑟𝑟𝑟𝑟)†, 𝜎𝜎𝜎𝜎(�̃�𝑠𝑠𝑠)2 = 𝜎𝜎𝜎𝜎0 , 

with  
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(2.6) 𝜎𝜎𝜎𝜎(�̃�𝑛𝑛𝑛)† = 𝜎𝜎𝜎𝜎(�̃�𝑛𝑛𝑛), [𝐴𝐴𝐴𝐴(𝑟𝑟𝑟𝑟), 𝜎𝜎𝜎𝜎(�̃�𝑛𝑛𝑛)]  =  0, 

where [𝐴𝐴𝐴𝐴, 𝐵𝐵𝐵𝐵]  =  𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 −  𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴 is called Lie 
bracket. 

Note that |𝒒𝒒𝒒𝒒|2 ≔ �̅�𝑞𝑞𝑞𝑞𝑞𝑞𝑞 = 𝑟𝑟𝑟𝑟2  𝜎𝜎𝜎𝜎0 .Thereby |𝒒𝒒𝒒𝒒|2 =
(𝑥𝑥𝑥𝑥0

2 + 𝑥𝑥𝑥𝑥1
2 + 𝑥𝑥𝑥𝑥2

2+𝑥𝑥𝑥𝑥3
2)𝕀𝕀𝕀𝕀2defines a real norm on 

𝐻𝐻𝐻𝐻 and 𝕀𝕀𝕀𝕀2 stands for the 2 × 2 identity matrix. 

2.2. Properties of Quaternions: The quaternion 
product allows the following properties. 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟 𝑞𝑞𝑞𝑞, 𝑟𝑟𝑟𝑟, 𝑠𝑠𝑠𝑠 ∈  𝐻𝐻𝐻𝐻, we have 

(a) 𝑞𝑞𝑞𝑞(𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠)  =  (𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟)𝑠𝑠𝑠𝑠 (associative) 

(b) 𝑞𝑞𝑞𝑞(𝑟𝑟𝑟𝑟 +  𝑠𝑠𝑠𝑠)  =  𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟 +  𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠. 

(c) For each 𝑞𝑞𝑞𝑞 ≠  0, there exists 𝑟𝑟𝑟𝑟 such that         
      𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟 =  1 

(d) If 𝑞𝑞𝑞𝑞𝑟𝑟𝑟𝑟 =  𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠 then 𝑟𝑟𝑟𝑟 =  𝑠𝑠𝑠𝑠 whenever 𝑞𝑞𝑞𝑞 ≠ 0 

The quaternion product is not commutative 

3. FRAMES IN QUATERNION HILBERT 
SPACE 

Definition 3.1. Let 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿 is a vector space under 

left multiplication by quaternionic scalars, where 
𝐻𝐻𝐻𝐻 stands for the quaternion algebra. For 
𝑓𝑓𝑓𝑓, 𝑔𝑔𝑔𝑔, ℎ ∈ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿 and 𝑞𝑞𝑞𝑞 ∈  𝐻𝐻𝐻𝐻, the inner product   

⟨. |. ⟩ ∶  𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿 × 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿 → 𝐻𝐻𝐻𝐻satisfies the following 
properties: 

(a) ⟨𝑓𝑓𝑓𝑓|𝑔𝑔𝑔𝑔⟩̅̅ ̅̅ ̅̅ ̅ =  ⟨𝑔𝑔𝑔𝑔|𝑓𝑓𝑓𝑓⟩ 

(b) ‖𝑓𝑓𝑓𝑓‖2 = ⟨𝑓𝑓𝑓𝑓|𝑓𝑓𝑓𝑓⟩ > 0 unless 𝑓𝑓𝑓𝑓 =  0, a real   
norm 

(c) ⟨𝑓𝑓𝑓𝑓 |𝑔𝑔𝑔𝑔 +  ℎ⟩ = ⟨𝑓𝑓𝑓𝑓 |𝑔𝑔𝑔𝑔 ⟩ +  ⟨𝑓𝑓𝑓𝑓 | ℎ⟩ 

(d) ⟨𝒒𝒒𝒒𝒒𝑓𝑓𝑓𝑓|𝑔𝑔𝑔𝑔⟩  =  𝒒𝒒𝒒𝒒⟨𝑓𝑓𝑓𝑓|𝑔𝑔𝑔𝑔⟩ 

(e) ⟨𝑓𝑓𝑓𝑓|𝒒𝒒𝒒𝒒𝑔𝑔𝑔𝑔⟩  =   ⟨𝑓𝑓𝑓𝑓|𝑔𝑔𝑔𝑔⟩�̅�𝒒𝒒𝒒. 

Note that the space 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿is together with ⟨. |. ⟩is a 

separable Hilbert space. Properties of left 
quaternion Hilbert spaces as needed here can be 
listed as follows: For 𝑓𝑓𝑓𝑓, 𝑔𝑔𝑔𝑔, ∈ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿 and 𝑝𝑝𝑝𝑝, 𝑞𝑞𝑞𝑞 ∈  𝐻𝐻𝐻𝐻, 
we have 

(a) 𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓 +  𝑞𝑞𝑞𝑞𝑔𝑔𝑔𝑔 ∈  𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿 

(b) 𝑝𝑝𝑝𝑝(𝑓𝑓𝑓𝑓 +  𝑔𝑔𝑔𝑔)  =  𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓 +  𝑝𝑝𝑝𝑝𝑔𝑔𝑔𝑔 

(c) (𝑝𝑝𝑝𝑝𝑞𝑞𝑞𝑞)𝑓𝑓𝑓𝑓 =  𝑝𝑝𝑝𝑝(𝑞𝑞𝑞𝑞𝑓𝑓𝑓𝑓) 

(d) (𝑝𝑝𝑝𝑝 +  𝑞𝑞𝑞𝑞)𝑓𝑓𝑓𝑓 =  𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓 +  𝑞𝑞𝑞𝑞𝑓𝑓𝑓𝑓. 

Proposition 3.2. [12] (Schwartz inequality) 
⟨𝑓𝑓𝑓𝑓|𝑔𝑔𝑔𝑔⟩⟨𝑔𝑔𝑔𝑔|𝑓𝑓𝑓𝑓⟩ ≤ ‖𝑓𝑓𝑓𝑓‖2 ‖𝑔𝑔𝑔𝑔‖2,  for all 𝑓𝑓𝑓𝑓, 𝑔𝑔𝑔𝑔, ∈ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿 

Definition 3.3. (Basis) Let 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿be a finite 

dimensional left quaternion Hilbert space, 
equipped with an inner product ⟨. |. ⟩ which 
wechoose to be linear in the second entry.                     
A sequence {𝑒𝑒𝑒𝑒𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1

𝑚𝑚𝑚𝑚  is a basis for 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿 if the 

following two conditions are satisfied: 

(1) 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿 = 𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛{𝑒𝑒𝑒𝑒𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1

𝑚𝑚𝑚𝑚  

 (2) {𝑒𝑒𝑒𝑒𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1
𝑚𝑚𝑚𝑚 is a linearly independent set. 

We now introduce the frames on finite 
dimensional left quaternion Hilbert spaces. We 
shall show that the complex treatment adapt to 
the quaternions as well. In this paper left span 
means left span over the quaternion scalar 
field, 𝐻𝐻𝐻𝐻. We shall also prove the functional 
analytic properties for quaternions as needed 
here, and these proofs are the adaptation of the 
proofs of the complex cases given in [16]. The 
theory of frames offered here, more or less, 
follows the lines of [5]. 

Definition 3.4. (Frames) A countable family of 
elements {𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘 }𝑘𝑘𝑘𝑘∈𝐼𝐼𝐼𝐼  in 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻 

𝐿𝐿𝐿𝐿 is a frame for 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿  if 

there exist constants 𝐴𝐴𝐴𝐴, 𝐵𝐵𝐵𝐵 >  0such that 

(3.1)  𝐴𝐴𝐴𝐴‖𝑓𝑓𝑓𝑓‖2 ≤ ∑ |⟨𝑓𝑓𝑓𝑓|𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩|2 ≤𝑘𝑘𝑘𝑘∈𝐼𝐼𝐼𝐼 𝐵𝐵𝐵𝐵‖𝑓𝑓𝑓𝑓‖2 ,  

for all 𝑓𝑓𝑓𝑓  ∈ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿. 

The numbers 𝐴𝐴𝐴𝐴 and 𝐵𝐵𝐵𝐵 are called frame bounds. 
They are not unique. The optimal lower frame 
bound is the supremum over all lower frame 
bounds, and the optimal upper frame bound is 
the infimum over all upper frame bounds. Note 
that the optimal frame bounds are actually the 
frame bounds. A frame is said to be normalized 
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if‖𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘‖ = 1, for all 𝑘𝑘𝑘𝑘 ∈  𝐼𝐼𝐼𝐼. In this note we shall 
only consider finite frames {𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1

𝑚𝑚𝑚𝑚 , 𝑚𝑚𝑚𝑚 ∈  ℕ. 
With this restriction, Schwartz inequality shows 
that 

(3.2) ∑ |⟨𝑓𝑓𝑓𝑓|𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩|2𝑚𝑚𝑚𝑚
𝑘𝑘𝑘𝑘=1 ≤ ∑ ‖𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘‖2 ‖𝑓𝑓𝑓𝑓‖2,𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1  

for all 𝑓𝑓𝑓𝑓  ∈ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿.From (3.2) it is clear that the 

upper frame condition is always satisfied with 
𝐴𝐴𝐴𝐴 = ∑ ‖𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘‖2𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1 .  In order for the lower 
condition in (3.1) to be satisfied, it is necessary 
that 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 {𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1

𝑚𝑚𝑚𝑚 = 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿.Let us see this in 

the following. 

Proposition 3.5. Let  {𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1
𝑚𝑚𝑚𝑚 be a sequence in 

𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿.Then  {𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1

𝑚𝑚𝑚𝑚 is a frame for 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 {𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1

𝑚𝑚𝑚𝑚 . 

Corollary 3.6. A family of elements {𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1
𝑚𝑚𝑚𝑚 in 

𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿is a frame for 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿  if and only 
if  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 {𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1

𝑚𝑚𝑚𝑚 = 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿.  

Proof. Suppose that {𝑓𝑓𝑓𝑓}𝑘𝑘𝑘𝑘=1
𝑚𝑚𝑚𝑚  is a frame for 

𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿.Then there exist 𝐴𝐴𝐴𝐴, 𝐵𝐵𝐵𝐵 >  0 such that                    

(3.3)          𝐴𝐴𝐴𝐴‖𝑓𝑓𝑓𝑓‖2 ≤ ∑ |⟨𝑓𝑓𝑓𝑓|𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩|2𝑚𝑚𝑚𝑚
𝑘𝑘𝑘𝑘=1 ≤ 𝐵𝐵𝐵𝐵‖𝑓𝑓𝑓𝑓‖2  

for all 𝑓𝑓𝑓𝑓  ∈ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿. If there exists 𝑓𝑓𝑓𝑓  ∈ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿 such that   
𝑓𝑓𝑓𝑓 ∉ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠{𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=0

∞ . Then 𝑓𝑓𝑓𝑓 ≠ ∑ 𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘 𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘 
𝑚𝑚𝑚𝑚
𝑘𝑘𝑘𝑘=1 for 

all sequences {𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1
𝑚𝑚𝑚𝑚 ⊂ 𝐻𝐻𝐻𝐻. That is,‖𝑓𝑓𝑓𝑓‖2 ≠

∑ |𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘 |2‖𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘‖2𝑚𝑚𝑚𝑚
𝑘𝑘𝑘𝑘=1  for any sequence {𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1

𝑚𝑚𝑚𝑚 ⊂
𝐻𝐻𝐻𝐻. Set 𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘 = ⟨ 𝑓𝑓𝑓𝑓

√𝐵𝐵𝐵𝐵 | 𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘
‖𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘‖⟩ ∈ 𝐻𝐻𝐻𝐻 for all 𝑘𝑘𝑘𝑘 =

1, 2, ⋯ , 𝑚𝑚𝑚𝑚.   

Thereby 

‖𝑓𝑓𝑓𝑓‖2 ≠ ∑ |⟨ 𝑓𝑓𝑓𝑓
√𝐵𝐵𝐵𝐵 | 𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘

‖𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘‖⟩|
2𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1
‖𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘‖2 

= 1
𝐵𝐵𝐵𝐵 ∑|⟨𝑓𝑓𝑓𝑓|𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩|2

𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1
 

                          ≤ 1
𝐵𝐵𝐵𝐵 𝐵𝐵𝐵𝐵‖𝑓𝑓𝑓𝑓‖2 = ‖𝑓𝑓𝑓𝑓‖2by (3.3), 

which is a contradiction. Thereby 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿 ⊆

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠{𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1
𝑚𝑚𝑚𝑚 . Clearly 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠{𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1

𝑚𝑚𝑚𝑚 ⊆
𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿. Thereby the conclusion follows. 

Conversely suppose that 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠{𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1
𝑚𝑚𝑚𝑚 =

𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿. From proposition (3.5)  {𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1

𝑚𝑚𝑚𝑚 is a frame 
for 𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠{𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1

𝑚𝑚𝑚𝑚  , thereby  {𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1
𝑚𝑚𝑚𝑚 is a frame 

for𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿.                                                                 □ 

From the above corollary it is clear that a frame 
is an over complete family of vectors in a finite 
dimensional Hilbert space. 

3.1. Frame operator in left quaternion Hilbert 
space. 

3.1.1. Operators on left quaternion Hilbert 
spaces.  Let 𝒪𝒪𝒪𝒪 ∶  𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿 ⟶ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿be a quaternion linear 

operator. In this case, the operators always act 
from the left as 𝒪𝒪𝒪𝒪|𝑓𝑓𝑓𝑓⟩ and the scalar multiple of 
the operator is taken from the left as 𝑞𝑞𝑞𝑞𝒪𝒪𝒪𝒪. Further 
the operators obey the following rules: 

(i) 𝒪𝒪𝒪𝒪|𝒒𝒒𝒒𝒒𝑓𝑓𝑓𝑓⟩  =  𝒒𝒒𝒒𝒒(𝒪𝒪𝒪𝒪|𝑓𝑓𝑓𝑓⟩). 

(ii)⟨𝑓𝑓𝑓𝑓|𝒪𝒪𝒪𝒪𝒪𝒪𝒪𝒪⟩ = ⟨𝒪𝒪𝒪𝒪†𝑓𝑓𝑓𝑓|𝒪𝒪𝒪𝒪⟩; 𝒪𝒪𝒪𝒪†is the adjoint of 𝒪𝒪𝒪𝒪. 

(iii) (𝒒𝒒𝒒𝒒𝒪𝒪𝒪𝒪)|𝑓𝑓𝑓𝑓⟩  =  𝒪𝒪𝒪𝒪|𝒒𝒒𝒒𝒒𝑓𝑓𝑓𝑓⟩. 

For a detail explanation we refer the reader to 
[12].  
Definition 3.7. [12] Let 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿 be any 
leftquarternion Hilbert space. A mapping 𝑆𝑆𝑆𝑆 ∶
 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿 ⟶ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿is said to be linear if, 𝑆𝑆𝑆𝑆(𝛼𝛼𝛼𝛼𝑓𝑓𝑓𝑓 + 𝛽𝛽𝛽𝛽𝒪𝒪𝒪𝒪) =

 𝛼𝛼𝛼𝛼𝑆𝑆𝑆𝑆(𝑓𝑓𝑓𝑓) +  𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆(𝒪𝒪𝒪𝒪);for all 𝑓𝑓𝑓𝑓, 𝒪𝒪𝒪𝒪 ∈ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿 and 𝛼𝛼𝛼𝛼, 𝛽𝛽𝛽𝛽 ∈ 𝐻𝐻𝐻𝐻. 

 
Definition 3.8. [12] A linear operator 𝑆𝑆𝑆𝑆 ∶  𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿 ⟶
𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿is said to be bounded if, ‖𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓‖ ≤ 𝐾𝐾𝐾𝐾𝑓𝑓𝑓𝑓,forsome 
constant 𝐾𝐾𝐾𝐾 > 0 and all ∈ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿 . 
 
Definition 3.9. [12](Adjoint operator) 
 Let 𝑆𝑆𝑆𝑆 ∶  𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿 ⟶ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿be a bounded linear operator 

on a left quaternion Hilbert space. We define its 
adjoint to be the operator  𝑆𝑆𝑆𝑆† ∶  𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿 ⟶ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿thathas 

the property 
(3.4) ⟨𝑓𝑓𝑓𝑓|𝑆𝑆𝑆𝑆𝒪𝒪𝒪𝒪⟩ = ⟨𝑆𝑆𝑆𝑆†𝑓𝑓𝑓𝑓|𝒪𝒪𝒪𝒪⟩; 
for all 𝑓𝑓𝑓𝑓, 𝒪𝒪𝒪𝒪 ∈ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿. 
 
Definition 3.10. [12](Self-adjoint operator)       
Let  𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿  be a left quaternion Hilbert space. A 
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if‖𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘‖ = 1, for all 𝑘𝑘𝑘𝑘 ∈  𝐼𝐼𝐼𝐼. In this note we shall 
only consider finite frames {𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1

𝑚𝑚𝑚𝑚 , 𝑚𝑚𝑚𝑚 ∈  ℕ. 
With this restriction, Schwartz inequality shows 
that 

(3.2) ∑ |⟨𝑓𝑓𝑓𝑓|𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩|2𝑚𝑚𝑚𝑚
𝑘𝑘𝑘𝑘=1 ≤ ∑ ‖𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘‖2 ‖𝑓𝑓𝑓𝑓‖2,𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1  

for all 𝑓𝑓𝑓𝑓  ∈ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿.From (3.2) it is clear that the 

upper frame condition is always satisfied with 
𝐴𝐴𝐴𝐴 = ∑ ‖𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘‖2𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1 .  In order for the lower 
condition in (3.1) to be satisfied, it is necessary 
that 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 {𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1

𝑚𝑚𝑚𝑚 = 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿.Let us see this in 

the following. 

Proposition 3.5. Let  {𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1
𝑚𝑚𝑚𝑚 be a sequence in 

𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿.Then  {𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1

𝑚𝑚𝑚𝑚 is a frame for 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 {𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1

𝑚𝑚𝑚𝑚 . 

Corollary 3.6. A family of elements {𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1
𝑚𝑚𝑚𝑚 in 

𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿is a frame for 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿  if and only 
if  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 {𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1

𝑚𝑚𝑚𝑚 = 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿.  

Proof. Suppose that {𝑓𝑓𝑓𝑓}𝑘𝑘𝑘𝑘=1
𝑚𝑚𝑚𝑚  is a frame for 

𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿.Then there exist 𝐴𝐴𝐴𝐴, 𝐵𝐵𝐵𝐵 >  0 such that                    

(3.3)          𝐴𝐴𝐴𝐴‖𝑓𝑓𝑓𝑓‖2 ≤ ∑ |⟨𝑓𝑓𝑓𝑓|𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩|2𝑚𝑚𝑚𝑚
𝑘𝑘𝑘𝑘=1 ≤ 𝐵𝐵𝐵𝐵‖𝑓𝑓𝑓𝑓‖2  

for all 𝑓𝑓𝑓𝑓  ∈ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿. If there exists 𝑓𝑓𝑓𝑓  ∈ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿 such that   
𝑓𝑓𝑓𝑓 ∉ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠{𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=0

∞ . Then 𝑓𝑓𝑓𝑓 ≠ ∑ 𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘 𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘 
𝑚𝑚𝑚𝑚
𝑘𝑘𝑘𝑘=1 for 

all sequences {𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1
𝑚𝑚𝑚𝑚 ⊂ 𝐻𝐻𝐻𝐻. That is,‖𝑓𝑓𝑓𝑓‖2 ≠

∑ |𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘 |2‖𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘‖2𝑚𝑚𝑚𝑚
𝑘𝑘𝑘𝑘=1  for any sequence {𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1

𝑚𝑚𝑚𝑚 ⊂
𝐻𝐻𝐻𝐻. Set 𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘 = ⟨ 𝑓𝑓𝑓𝑓

√𝐵𝐵𝐵𝐵 | 𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘
‖𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘‖⟩ ∈ 𝐻𝐻𝐻𝐻 for all 𝑘𝑘𝑘𝑘 =

1, 2, ⋯ , 𝑚𝑚𝑚𝑚.   

Thereby 

‖𝑓𝑓𝑓𝑓‖2 ≠ ∑ |⟨ 𝑓𝑓𝑓𝑓
√𝐵𝐵𝐵𝐵 | 𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘

‖𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘‖⟩|
2𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1
‖𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘‖2 

= 1
𝐵𝐵𝐵𝐵 ∑|⟨𝑓𝑓𝑓𝑓|𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩|2

𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1
 

                          ≤ 1
𝐵𝐵𝐵𝐵 𝐵𝐵𝐵𝐵‖𝑓𝑓𝑓𝑓‖2 = ‖𝑓𝑓𝑓𝑓‖2by (3.3), 

which is a contradiction. Thereby 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿 ⊆

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠{𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1
𝑚𝑚𝑚𝑚 . Clearly 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠{𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1

𝑚𝑚𝑚𝑚 ⊆
𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿. Thereby the conclusion follows. 

Conversely suppose that 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠{𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1
𝑚𝑚𝑚𝑚 =

𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿. From proposition (3.5)  {𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1

𝑚𝑚𝑚𝑚 is a frame 
for 𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠{𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1

𝑚𝑚𝑚𝑚  , thereby  {𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1
𝑚𝑚𝑚𝑚 is a frame 

for𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿.                                                                 □ 

From the above corollary it is clear that a frame 
is an over complete family of vectors in a finite 
dimensional Hilbert space. 

3.1. Frame operator in left quaternion Hilbert 
space. 

3.1.1. Operators on left quaternion Hilbert 
spaces.  Let 𝒪𝒪𝒪𝒪 ∶  𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿 ⟶ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿be a quaternion linear 

operator. In this case, the operators always act 
from the left as 𝒪𝒪𝒪𝒪|𝑓𝑓𝑓𝑓⟩ and the scalar multiple of 
the operator is taken from the left as 𝑞𝑞𝑞𝑞𝒪𝒪𝒪𝒪. Further 
the operators obey the following rules: 

(i) 𝒪𝒪𝒪𝒪|𝒒𝒒𝒒𝒒𝑓𝑓𝑓𝑓⟩  =  𝒒𝒒𝒒𝒒(𝒪𝒪𝒪𝒪|𝑓𝑓𝑓𝑓⟩). 

(ii)⟨𝑓𝑓𝑓𝑓|𝒪𝒪𝒪𝒪𝒪𝒪𝒪𝒪⟩ = ⟨𝒪𝒪𝒪𝒪†𝑓𝑓𝑓𝑓|𝒪𝒪𝒪𝒪⟩; 𝒪𝒪𝒪𝒪†is the adjoint of 𝒪𝒪𝒪𝒪. 

(iii) (𝒒𝒒𝒒𝒒𝒪𝒪𝒪𝒪)|𝑓𝑓𝑓𝑓⟩  =  𝒪𝒪𝒪𝒪|𝒒𝒒𝒒𝒒𝑓𝑓𝑓𝑓⟩. 

For a detail explanation we refer the reader to 
[12].  
Definition 3.7. [12] Let 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿 be any 
leftquarternion Hilbert space. A mapping 𝑆𝑆𝑆𝑆 ∶
 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿 ⟶ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿is said to be linear if, 𝑆𝑆𝑆𝑆(𝛼𝛼𝛼𝛼𝑓𝑓𝑓𝑓 + 𝛽𝛽𝛽𝛽𝒪𝒪𝒪𝒪) =

 𝛼𝛼𝛼𝛼𝑆𝑆𝑆𝑆(𝑓𝑓𝑓𝑓) +  𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆(𝒪𝒪𝒪𝒪);for all 𝑓𝑓𝑓𝑓, 𝒪𝒪𝒪𝒪 ∈ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿 and 𝛼𝛼𝛼𝛼, 𝛽𝛽𝛽𝛽 ∈ 𝐻𝐻𝐻𝐻. 

 
Definition 3.8. [12] A linear operator 𝑆𝑆𝑆𝑆 ∶  𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿 ⟶
𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿is said to be bounded if, ‖𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓‖ ≤ 𝐾𝐾𝐾𝐾𝑓𝑓𝑓𝑓,forsome 
constant 𝐾𝐾𝐾𝐾 > 0 and all ∈ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿 . 
 
Definition 3.9. [12](Adjoint operator) 
 Let 𝑆𝑆𝑆𝑆 ∶  𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿 ⟶ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿be a bounded linear operator 

on a left quaternion Hilbert space. We define its 
adjoint to be the operator  𝑆𝑆𝑆𝑆† ∶  𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿 ⟶ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿thathas 

the property 
(3.4) ⟨𝑓𝑓𝑓𝑓|𝑆𝑆𝑆𝑆𝒪𝒪𝒪𝒪⟩ = ⟨𝑆𝑆𝑆𝑆†𝑓𝑓𝑓𝑓|𝒪𝒪𝒪𝒪⟩; 
for all 𝑓𝑓𝑓𝑓, 𝒪𝒪𝒪𝒪 ∈ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿. 
 
Definition 3.10. [12](Self-adjoint operator)       
Let  𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿  be a left quaternion Hilbert space. A 
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bounded linear operator 𝑆𝑆𝑆𝑆 on 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿 is called self-

adjoint, if  𝑆𝑆𝑆𝑆 † =  𝑆𝑆𝑆𝑆. 
Analogous to commutative case, we now 
provide elementary results that hold for left 
quaternion space, which is non commutative. 
 
Lemma 3.11. Let 𝑈𝑈𝑈𝑈𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿 ,𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿be finite dimensional 

left quaternion Hilbert spaces and 𝑆𝑆𝑆𝑆 ∶  𝑈𝑈𝑈𝑈𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿 ⟶ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿 
be a linear mapping then 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆  +  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆  =  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑈𝑈𝑈𝑈𝐿𝐿𝐿𝐿
𝐻𝐻𝐻𝐻 

where 𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆 ≔  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆, 𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆 ∶=  𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 𝑆𝑆𝑆𝑆. 
 
Lemma 3.12. Let 𝑆𝑆𝑆𝑆 ∶  𝑈𝑈𝑈𝑈𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿 ⟶ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿be a linear 

mapping. 𝑆𝑆𝑆𝑆 is one to one if and only if 𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆 = {0}. 
 
Lemma 3.13. Let 𝑈𝑈𝑈𝑈𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿 ,𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿are finite dimensional 

left quaternion Hilbert spaces with 
samedimension. Let 𝑆𝑆𝑆𝑆 ∶  𝑈𝑈𝑈𝑈𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿 ⟶ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿be a 

linearmapping. If 𝑆𝑆𝑆𝑆 is one to one then 𝑆𝑆𝑆𝑆 is onto.  
 
Lemma 3.14. (Pythagoras' law) Suppose that 
𝑜𝑜𝑜𝑜 and 𝑖𝑖𝑖𝑖 is an arbitrary pair of orthogonal vectors 
in the left quaternion Hilbert space 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿.Then we 
have Pythagoras' formula 
(3.5)           ‖𝑜𝑜𝑜𝑜 +  𝑖𝑖𝑖𝑖 ‖2 =  ‖𝑜𝑜𝑜𝑜 ‖2 + ‖𝑖𝑖𝑖𝑖 ‖2  . 
 
 
Lemma 3.15. Let 𝑇𝑇𝑇𝑇 ∶  𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚  ⟶ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿  be a linear 
mapping and 𝑇𝑇𝑇𝑇† ∶  𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿  ⟶ 𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚be its 
adjointoperator. Then 𝑁𝑁𝑁𝑁 𝑇𝑇𝑇𝑇 =  𝑅𝑅𝑅𝑅𝑇𝑇𝑇𝑇†

⊥ , where 𝑁𝑁𝑁𝑁𝑇𝑇𝑇𝑇 ∶=
 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 𝑇𝑇𝑇𝑇and  𝑅𝑅𝑅𝑅𝑇𝑇𝑇𝑇† ∶=  𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇†. 
For detail proofs of the above lemmas we refer 
the reader to [13]. 
 
3.1.2. Frame operators. Consider now a left 
quaternion Hilbert space, 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿  with a frame 
 {𝑜𝑜𝑜𝑜𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1

𝑚𝑚𝑚𝑚   and define a linear mapping 
𝑇𝑇𝑇𝑇 ∶  𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚  ⟶ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿  by 
 
(3.6)              𝑇𝑇𝑇𝑇  {𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1

𝑚𝑚𝑚𝑚 = ∑ 𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘𝑜𝑜𝑜𝑜𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚
𝑘𝑘𝑘𝑘=1 ,   𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘 ∈ 𝐻𝐻𝐻𝐻. 

 

T is usually called the pre-frame operator or the 
synthesis operator. The adjoint operator           
𝑇𝑇𝑇𝑇† ∶  𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿  ⟶ 𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚, by 
 
(3.7)            𝑇𝑇𝑇𝑇†𝑜𝑜𝑜𝑜 = {⟨𝑜𝑜𝑜𝑜|𝑜𝑜𝑜𝑜𝑘𝑘𝑘𝑘⟩}𝑘𝑘𝑘𝑘=1

𝑚𝑚𝑚𝑚  
 
is called the analysis operator. By composing 
𝑇𝑇𝑇𝑇 with its adjoint we obtain the frame operator 
𝑆𝑆𝑆𝑆 ∶  𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿 ⟶ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿by 

 
(3.8)            𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜 =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇†𝑜𝑜𝑜𝑜 = ∑ ⟨𝑜𝑜𝑜𝑜|𝑜𝑜𝑜𝑜𝑘𝑘𝑘𝑘⟩𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1 𝑜𝑜𝑜𝑜𝑘𝑘𝑘𝑘 
 
Note that in terms of the frame operator, for 
  𝑜𝑜𝑜𝑜 ∈ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿 
⟨𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜|𝑜𝑜𝑜𝑜⟩ = ⟨∑ ⟨𝑜𝑜𝑜𝑜|𝑜𝑜𝑜𝑜𝑘𝑘𝑘𝑘⟩𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1 𝑜𝑜𝑜𝑜𝑘𝑘𝑘𝑘|𝑜𝑜𝑜𝑜⟩ 

          = ∑⟨𝑜𝑜𝑜𝑜|𝑜𝑜𝑜𝑜𝑘𝑘𝑘𝑘⟩
𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1
⟨𝑜𝑜𝑜𝑜𝑘𝑘𝑘𝑘|𝑜𝑜𝑜𝑜⟩ 

    = ∑|⟨𝑜𝑜𝑜𝑜|𝑜𝑜𝑜𝑜𝑘𝑘𝑘𝑘⟩|2
𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1
. 

Thereby 
 
(3.9) ⟨𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜|𝑜𝑜𝑜𝑜⟩ = ∑ |⟨𝑜𝑜𝑜𝑜|𝑜𝑜𝑜𝑜𝑘𝑘𝑘𝑘⟩|2𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1 , 𝑜𝑜𝑜𝑜 ∈ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿 . 

 
A frame  {𝑜𝑜𝑜𝑜𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1

𝑚𝑚𝑚𝑚  is tight if we can choose 
𝐴𝐴𝐴𝐴 =  𝐵𝐵𝐵𝐵 in the definition (3.4), hence (3.1) 
gives ∑ |⟨𝑜𝑜𝑜𝑜|𝑜𝑜𝑜𝑜𝑘𝑘𝑘𝑘⟩|2𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1 = 𝐴𝐴𝐴𝐴‖𝑜𝑜𝑜𝑜‖2,for all 𝑜𝑜𝑜𝑜 ∈ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿. 

 
Thereby ⟨𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜|𝑜𝑜𝑜𝑜⟩ = 𝐴𝐴𝐴𝐴‖𝑜𝑜𝑜𝑜‖2,for all  𝑜𝑜𝑜𝑜 ∈ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿. 
 
Theorem 3.16. (Frame decomposition 
theorem)Let  {𝑜𝑜𝑜𝑜𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1

𝑚𝑚𝑚𝑚 be a frame for 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿with 

frame operator𝑆𝑆𝑆𝑆. Then 
(1) 𝑆𝑆𝑆𝑆 is self-adjoint and invertible. 
(2) Every 𝑜𝑜𝑜𝑜 ∈ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿 can be represented as 

          𝑜𝑜𝑜𝑜 = ∑⟨𝑜𝑜𝑜𝑜|𝑆𝑆𝑆𝑆−1𝑜𝑜𝑜𝑜𝑘𝑘𝑘𝑘⟩
𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1
𝑜𝑜𝑜𝑜𝑘𝑘𝑘𝑘 = ∑⟨𝑜𝑜𝑜𝑜|𝑜𝑜𝑜𝑜𝑘𝑘𝑘𝑘⟩𝑆𝑆𝑆𝑆−1

𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1
𝑜𝑜𝑜𝑜𝑘𝑘𝑘𝑘 

 
 (3) If 𝑜𝑜𝑜𝑜 ∈ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿has the representation   
        𝑜𝑜𝑜𝑜 = ∑ 𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘𝑜𝑜𝑜𝑜𝑘𝑘𝑘𝑘

𝑚𝑚𝑚𝑚
𝑘𝑘𝑘𝑘=1  for some scalar coefficients 

       {𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1
𝑚𝑚𝑚𝑚 then 
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∑|𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘|2 =
𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1
∑|⟨𝑓𝑓𝑓𝑓|𝑆𝑆𝑆𝑆−1𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩|2
𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1
 

                           + ∑|𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘 − ⟨𝑓𝑓𝑓𝑓|𝑆𝑆𝑆𝑆−1𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩|2
𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1
 

 
Proof. (1) 𝑆𝑆𝑆𝑆 ∶  𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿 ⟶ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿by  

𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓 =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇†𝑓𝑓𝑓𝑓 = ∑ ⟨𝑓𝑓𝑓𝑓|𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚
𝑘𝑘𝑘𝑘=1 ,for all 𝑓𝑓𝑓𝑓 ∈ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿. 
Now 

𝑆𝑆𝑆𝑆† =  (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇†)† =  (𝑇𝑇𝑇𝑇†)†𝑇𝑇𝑇𝑇†  =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇†  =  𝑆𝑆𝑆𝑆. 
It follows that 𝑆𝑆𝑆𝑆  is self-adjoint. We have 
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑆𝑆𝑆𝑆 = {𝑓𝑓𝑓𝑓 ∶  𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓 = 0}.  Let 𝑓𝑓𝑓𝑓 ∈  𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑆𝑆𝑆𝑆, then 
𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓 =  0. Therefore 

0 = ⟨𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓|𝑓𝑓𝑓𝑓⟩ 
                                 = ⟨∑ ⟨𝑓𝑓𝑓𝑓|𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1 𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘|𝑓𝑓𝑓𝑓⟩ 

                = ∑|⟨𝑓𝑓𝑓𝑓|𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩|2
𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1
. 

 
Thereby ∑ |⟨𝑓𝑓𝑓𝑓|𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩|2𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1 = 0. Since  {𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1
𝑚𝑚𝑚𝑚  

be a frame for 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿by definition (3.4), 

𝐴𝐴𝐴𝐴‖𝑓𝑓𝑓𝑓‖2 ≤ ∑|⟨𝑓𝑓𝑓𝑓|𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩|2
𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1
≤ 𝐵𝐵𝐵𝐵‖𝑓𝑓𝑓𝑓‖2 , 

for all 𝑓𝑓𝑓𝑓 ∈ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿 . 

Hence  𝐴𝐴𝐴𝐴‖𝑓𝑓𝑓𝑓‖2 ≤ 0 ≤ 𝐵𝐵𝐵𝐵‖𝑓𝑓𝑓𝑓‖2 ,for all 𝑓𝑓𝑓𝑓 ∈ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿 , 

and 𝐴𝐴𝐴𝐴, 𝐵𝐵𝐵𝐵 >  0. So ‖𝑓𝑓𝑓𝑓‖2 =  0. Thereby 𝑓𝑓𝑓𝑓 =  0, 
for all 𝑓𝑓𝑓𝑓 ∈ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿 , it follows that 𝑁𝑁𝑁𝑁 𝑆𝑆𝑆𝑆 = { 0}. Hence 
𝑆𝑆𝑆𝑆 is one to one. Since 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿is of the 
finitedimension, from the lemma (3.13) 𝑆𝑆𝑆𝑆 is 
onto. Therefore 𝑆𝑆𝑆𝑆 is invertible. 
 
(2) If 𝑆𝑆𝑆𝑆 is self-adjoint then 𝑆𝑆𝑆𝑆−1 is self-adjoint. 
For, Consider 

(𝑆𝑆𝑆𝑆−1)†  = (𝑆𝑆𝑆𝑆†)−1  =  𝑆𝑆𝑆𝑆−1. 
Thereby 𝑆𝑆𝑆𝑆−1 is self-adjoint. If the function 𝑆𝑆𝑆𝑆 ∶
 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿 ⟶ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿 is linear and bijection then 𝑆𝑆𝑆𝑆−1 is 

linear. For, since 𝑆𝑆𝑆𝑆 is onto, 𝑆𝑆𝑆𝑆−1 ∶  𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿 ⟶ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿. 
Let 𝑓𝑓𝑓𝑓, 𝑔𝑔𝑔𝑔 ∈ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿 then there exists 𝑘𝑘𝑘𝑘, ℎ ∈  𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿such 

that 𝑆𝑆𝑆𝑆−1(𝑓𝑓𝑓𝑓)  =  𝑘𝑘𝑘𝑘 and 𝑆𝑆𝑆𝑆−1(𝑔𝑔𝑔𝑔) =  ℎ.Thereby 
𝑓𝑓𝑓𝑓 =  𝑆𝑆𝑆𝑆(𝑘𝑘𝑘𝑘) and 𝑔𝑔𝑔𝑔 =  𝑆𝑆𝑆𝑆(ℎ). 
Let 𝛼𝛼𝛼𝛼, 𝛽𝛽𝛽𝛽 ∈ 𝐻𝐻𝐻𝐻, then  

𝑆𝑆𝑆𝑆−1(𝛼𝛼𝛼𝛼𝑓𝑓𝑓𝑓 + 𝛽𝛽𝛽𝛽 𝑔𝑔𝑔𝑔) =  𝑆𝑆𝑆𝑆−1(𝛼𝛼𝛼𝛼𝑆𝑆𝑆𝑆(𝑘𝑘𝑘𝑘) + 𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆(ℎ)) 
                         =  𝑆𝑆𝑆𝑆−1(𝑆𝑆𝑆𝑆(𝛼𝛼𝛼𝛼𝑘𝑘𝑘𝑘 +  𝛽𝛽𝛽𝛽ℎ)) 

       =  𝛼𝛼𝛼𝛼𝑘𝑘𝑘𝑘 +  𝛽𝛽𝛽𝛽ℎ 
                              =  𝛼𝛼𝛼𝛼𝑆𝑆𝑆𝑆−1(𝑓𝑓𝑓𝑓)  +  𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆−1(𝑔𝑔𝑔𝑔) 

 
Thereby for all 𝑓𝑓𝑓𝑓, 𝑔𝑔𝑔𝑔 ∈ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿  and 𝛼𝛼𝛼𝛼, 𝛽𝛽𝛽𝛽 ∈  𝐻𝐻𝐻𝐻, 
𝑆𝑆𝑆𝑆−1(𝛼𝛼𝛼𝛼𝑓𝑓𝑓𝑓 + 𝛽𝛽𝛽𝛽 𝑔𝑔𝑔𝑔) =  𝛼𝛼𝛼𝛼𝑆𝑆𝑆𝑆−1(𝑓𝑓𝑓𝑓) +  𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆−1(𝑔𝑔𝑔𝑔). 

Hence 𝑆𝑆𝑆𝑆−1 is linear.  
Let 𝑓𝑓𝑓𝑓, ∈ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿 then 
 

𝑓𝑓𝑓𝑓 =  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆−1𝑓𝑓𝑓𝑓 
 

           =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇†𝑆𝑆𝑆𝑆−1𝑓𝑓𝑓𝑓 
 
                                  = ∑ ⟨𝑆𝑆𝑆𝑆−1𝑓𝑓𝑓𝑓|𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1 𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘 
 
                                  = ∑ ⟨𝑓𝑓𝑓𝑓|(𝑆𝑆𝑆𝑆−1)†𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1 𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘 
 
                                   = ∑ ⟨𝑓𝑓𝑓𝑓|𝑆𝑆𝑆𝑆−1𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1 𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘 
as 𝑆𝑆𝑆𝑆−1 is self adjoint. Thereby for every  ∈ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿,  
 
(3.10)              𝑓𝑓𝑓𝑓 = ∑ ⟨𝑓𝑓𝑓𝑓|𝑆𝑆𝑆𝑆−1𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1 𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘 
 
Similarly we have 

𝑓𝑓𝑓𝑓 =  𝑆𝑆𝑆𝑆−1𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓 
 

           = 𝑆𝑆𝑆𝑆−1 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇†𝑓𝑓𝑓𝑓 
                     
                                  = 𝑆𝑆𝑆𝑆−1(∑ ⟨𝑓𝑓𝑓𝑓|𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1 𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘) 
 
                                 = ∑ 𝑆𝑆𝑆𝑆−1(⟨𝑓𝑓𝑓𝑓|𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘)𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1  
 
                                 = ∑ ⟨𝑓𝑓𝑓𝑓|𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1 𝑆𝑆𝑆𝑆−1𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘 
 
as 𝑆𝑆𝑆𝑆−1 is linear. Thereby for every 𝑓𝑓𝑓𝑓 ∈ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿 
 
(3.11)                  𝑓𝑓𝑓𝑓 = ∑ ⟨𝑓𝑓𝑓𝑓|𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1 𝑆𝑆𝑆𝑆−1𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘 
 
From (3.10) and (3.11), for every 𝑓𝑓𝑓𝑓 ∈ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿, 
 

 𝑓𝑓𝑓𝑓 = ∑⟨𝑓𝑓𝑓𝑓|𝑆𝑆𝑆𝑆−1𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩
𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1
𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘 = ∑⟨𝑓𝑓𝑓𝑓|𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩

𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1
𝑆𝑆𝑆𝑆−1𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘 

 
 (3) Let 𝑓𝑓𝑓𝑓 ∈ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿, from corollary (3.6) 
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∑|𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘|2 =
𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1
∑|⟨𝑓𝑓𝑓𝑓|𝑆𝑆𝑆𝑆−1𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩|2
𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1
 

                           + ∑|𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘 − ⟨𝑓𝑓𝑓𝑓|𝑆𝑆𝑆𝑆−1𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩|2
𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1
 

 
Proof. (1) 𝑆𝑆𝑆𝑆 ∶  𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿 ⟶ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿by  

𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓 =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇†𝑓𝑓𝑓𝑓 = ∑ ⟨𝑓𝑓𝑓𝑓|𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚
𝑘𝑘𝑘𝑘=1 ,for all 𝑓𝑓𝑓𝑓 ∈ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿. 
Now 

𝑆𝑆𝑆𝑆† =  (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇†)† =  (𝑇𝑇𝑇𝑇†)†𝑇𝑇𝑇𝑇†  =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇†  =  𝑆𝑆𝑆𝑆. 
It follows that 𝑆𝑆𝑆𝑆  is self-adjoint. We have 
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑆𝑆𝑆𝑆 = {𝑓𝑓𝑓𝑓 ∶  𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓 = 0}.  Let 𝑓𝑓𝑓𝑓 ∈  𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑆𝑆𝑆𝑆, then 
𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓 =  0. Therefore 

0 = ⟨𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓|𝑓𝑓𝑓𝑓⟩ 
                                 = ⟨∑ ⟨𝑓𝑓𝑓𝑓|𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1 𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘|𝑓𝑓𝑓𝑓⟩ 

                = ∑|⟨𝑓𝑓𝑓𝑓|𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩|2
𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1
. 

 
Thereby ∑ |⟨𝑓𝑓𝑓𝑓|𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩|2𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1 = 0. Since  {𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1
𝑚𝑚𝑚𝑚  

be a frame for 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿by definition (3.4), 

𝐴𝐴𝐴𝐴‖𝑓𝑓𝑓𝑓‖2 ≤ ∑|⟨𝑓𝑓𝑓𝑓|𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩|2
𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1
≤ 𝐵𝐵𝐵𝐵‖𝑓𝑓𝑓𝑓‖2 , 

for all 𝑓𝑓𝑓𝑓 ∈ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿 . 

Hence  𝐴𝐴𝐴𝐴‖𝑓𝑓𝑓𝑓‖2 ≤ 0 ≤ 𝐵𝐵𝐵𝐵‖𝑓𝑓𝑓𝑓‖2 ,for all 𝑓𝑓𝑓𝑓 ∈ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿 , 

and 𝐴𝐴𝐴𝐴, 𝐵𝐵𝐵𝐵 >  0. So ‖𝑓𝑓𝑓𝑓‖2 =  0. Thereby 𝑓𝑓𝑓𝑓 =  0, 
for all 𝑓𝑓𝑓𝑓 ∈ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿 , it follows that 𝑁𝑁𝑁𝑁 𝑆𝑆𝑆𝑆 = { 0}. Hence 
𝑆𝑆𝑆𝑆 is one to one. Since 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿is of the 
finitedimension, from the lemma (3.13) 𝑆𝑆𝑆𝑆 is 
onto. Therefore 𝑆𝑆𝑆𝑆 is invertible. 
 
(2) If 𝑆𝑆𝑆𝑆 is self-adjoint then 𝑆𝑆𝑆𝑆−1 is self-adjoint. 
For, Consider 

(𝑆𝑆𝑆𝑆−1)†  = (𝑆𝑆𝑆𝑆†)−1  =  𝑆𝑆𝑆𝑆−1. 
Thereby 𝑆𝑆𝑆𝑆−1 is self-adjoint. If the function 𝑆𝑆𝑆𝑆 ∶
 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿 ⟶ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿 is linear and bijection then 𝑆𝑆𝑆𝑆−1 is 

linear. For, since 𝑆𝑆𝑆𝑆 is onto, 𝑆𝑆𝑆𝑆−1 ∶  𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿 ⟶ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿. 
Let 𝑓𝑓𝑓𝑓, 𝑔𝑔𝑔𝑔 ∈ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿 then there exists 𝑘𝑘𝑘𝑘, ℎ ∈  𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿such 

that 𝑆𝑆𝑆𝑆−1(𝑓𝑓𝑓𝑓)  =  𝑘𝑘𝑘𝑘 and 𝑆𝑆𝑆𝑆−1(𝑔𝑔𝑔𝑔) =  ℎ.Thereby 
𝑓𝑓𝑓𝑓 =  𝑆𝑆𝑆𝑆(𝑘𝑘𝑘𝑘) and 𝑔𝑔𝑔𝑔 =  𝑆𝑆𝑆𝑆(ℎ). 
Let 𝛼𝛼𝛼𝛼, 𝛽𝛽𝛽𝛽 ∈ 𝐻𝐻𝐻𝐻, then  

𝑆𝑆𝑆𝑆−1(𝛼𝛼𝛼𝛼𝑓𝑓𝑓𝑓 + 𝛽𝛽𝛽𝛽 𝑔𝑔𝑔𝑔) =  𝑆𝑆𝑆𝑆−1(𝛼𝛼𝛼𝛼𝑆𝑆𝑆𝑆(𝑘𝑘𝑘𝑘) + 𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆(ℎ)) 
                         =  𝑆𝑆𝑆𝑆−1(𝑆𝑆𝑆𝑆(𝛼𝛼𝛼𝛼𝑘𝑘𝑘𝑘 +  𝛽𝛽𝛽𝛽ℎ)) 

       =  𝛼𝛼𝛼𝛼𝑘𝑘𝑘𝑘 +  𝛽𝛽𝛽𝛽ℎ 
                              =  𝛼𝛼𝛼𝛼𝑆𝑆𝑆𝑆−1(𝑓𝑓𝑓𝑓)  +  𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆−1(𝑔𝑔𝑔𝑔) 

 
Thereby for all 𝑓𝑓𝑓𝑓, 𝑔𝑔𝑔𝑔 ∈ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿  and 𝛼𝛼𝛼𝛼, 𝛽𝛽𝛽𝛽 ∈  𝐻𝐻𝐻𝐻, 
𝑆𝑆𝑆𝑆−1(𝛼𝛼𝛼𝛼𝑓𝑓𝑓𝑓 + 𝛽𝛽𝛽𝛽 𝑔𝑔𝑔𝑔) =  𝛼𝛼𝛼𝛼𝑆𝑆𝑆𝑆−1(𝑓𝑓𝑓𝑓) +  𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆−1(𝑔𝑔𝑔𝑔). 

Hence 𝑆𝑆𝑆𝑆−1 is linear.  
Let 𝑓𝑓𝑓𝑓, ∈ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿 then 
 

𝑓𝑓𝑓𝑓 =  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆−1𝑓𝑓𝑓𝑓 
 

           =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇†𝑆𝑆𝑆𝑆−1𝑓𝑓𝑓𝑓 
 
                                  = ∑ ⟨𝑆𝑆𝑆𝑆−1𝑓𝑓𝑓𝑓|𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1 𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘 
 
                                  = ∑ ⟨𝑓𝑓𝑓𝑓|(𝑆𝑆𝑆𝑆−1)†𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1 𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘 
 
                                   = ∑ ⟨𝑓𝑓𝑓𝑓|𝑆𝑆𝑆𝑆−1𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1 𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘 
as 𝑆𝑆𝑆𝑆−1 is self adjoint. Thereby for every  ∈ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿,  
 
(3.10)              𝑓𝑓𝑓𝑓 = ∑ ⟨𝑓𝑓𝑓𝑓|𝑆𝑆𝑆𝑆−1𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1 𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘 
 
Similarly we have 

𝑓𝑓𝑓𝑓 =  𝑆𝑆𝑆𝑆−1𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓 
 

           = 𝑆𝑆𝑆𝑆−1 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇†𝑓𝑓𝑓𝑓 
                     
                                  = 𝑆𝑆𝑆𝑆−1(∑ ⟨𝑓𝑓𝑓𝑓|𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1 𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘) 
 
                                 = ∑ 𝑆𝑆𝑆𝑆−1(⟨𝑓𝑓𝑓𝑓|𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘)𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1  
 
                                 = ∑ ⟨𝑓𝑓𝑓𝑓|𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1 𝑆𝑆𝑆𝑆−1𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘 
 
as 𝑆𝑆𝑆𝑆−1 is linear. Thereby for every 𝑓𝑓𝑓𝑓 ∈ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿 
 
(3.11)                  𝑓𝑓𝑓𝑓 = ∑ ⟨𝑓𝑓𝑓𝑓|𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1 𝑆𝑆𝑆𝑆−1𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘 
 
From (3.10) and (3.11), for every 𝑓𝑓𝑓𝑓 ∈ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿, 
 

 𝑓𝑓𝑓𝑓 = ∑⟨𝑓𝑓𝑓𝑓|𝑆𝑆𝑆𝑆−1𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩
𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1
𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘 = ∑⟨𝑓𝑓𝑓𝑓|𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩

𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1
𝑆𝑆𝑆𝑆−1𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘 

 
 (3) Let 𝑓𝑓𝑓𝑓 ∈ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿, from corollary (3.6) 
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      𝑓𝑓𝑓𝑓 = ∑ 𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚
𝑘𝑘𝑘𝑘=1 𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘, for some  𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘 ∈ 𝐻𝐻𝐻𝐻 

      From previous part, 
 
(3.12)       𝑓𝑓𝑓𝑓 = ∑ 𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘

𝑚𝑚𝑚𝑚
𝑘𝑘𝑘𝑘=1 𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘 = ∑ ⟨𝑓𝑓𝑓𝑓|𝑆𝑆𝑆𝑆−1𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1 𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘 
 Hence 
 
(3.13)     ∑ (𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘 − ⟨𝑓𝑓𝑓𝑓|𝑆𝑆𝑆𝑆−1𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩)𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1 𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘 = 0. 
 
Thereby ∑ 𝑑𝑑𝑑𝑑𝑘𝑘𝑘𝑘

𝑚𝑚𝑚𝑚
𝑘𝑘𝑘𝑘=1 𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘 = 0, for some  

 𝑑𝑑𝑑𝑑𝑘𝑘𝑘𝑘 = 𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘 − ⟨𝑓𝑓𝑓𝑓|𝑆𝑆𝑆𝑆−1𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩ ∈ 𝐻𝐻𝐻𝐻. 
From (3.6), pre-frame operator 𝑇𝑇𝑇𝑇 ∶  𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚  ⟶ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿, 
is defined by 
 
(3.14)  𝑇𝑇𝑇𝑇{𝑑𝑑𝑑𝑑𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1

𝑚𝑚𝑚𝑚 = ∑ 𝑑𝑑𝑑𝑑𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚
𝑘𝑘𝑘𝑘=1 𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘, 

 
where {𝑑𝑑𝑑𝑑𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1

𝑚𝑚𝑚𝑚 = {𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1
𝑚𝑚𝑚𝑚 −{⟨𝑓𝑓𝑓𝑓|𝑆𝑆𝑆𝑆−1𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩}𝑘𝑘𝑘𝑘=1

𝑚𝑚𝑚𝑚  . 
We have 𝑁𝑁𝑁𝑁𝑇𝑇𝑇𝑇  = {{𝑑𝑑𝑑𝑑𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1

𝑚𝑚𝑚𝑚 |𝑇𝑇𝑇𝑇{𝑑𝑑𝑑𝑑𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1
𝑚𝑚𝑚𝑚 = 0},  

therefore {𝑑𝑑𝑑𝑑𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1
𝑚𝑚𝑚𝑚 ∈ 𝑁𝑁𝑁𝑁𝑇𝑇𝑇𝑇. 

From lemma (3.15) 𝑁𝑁𝑁𝑁𝑇𝑇𝑇𝑇 = 𝑅𝑅𝑅𝑅𝑇𝑇𝑇𝑇†
⊥  , then 

 
(3.15) {𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1

𝑚𝑚𝑚𝑚 −{⟨𝑓𝑓𝑓𝑓|𝑆𝑆𝑆𝑆−1𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩}𝑘𝑘𝑘𝑘=1
𝑚𝑚𝑚𝑚 ∈ 𝑅𝑅𝑅𝑅𝑇𝑇𝑇𝑇†

⊥  
 
From (3.6) and (3.7) we have 
𝑇𝑇𝑇𝑇†: 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿 ⟶ 𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚  by 𝑇𝑇𝑇𝑇†𝑓𝑓𝑓𝑓 = {⟨𝑓𝑓𝑓𝑓|𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩}𝑘𝑘𝑘𝑘=1
𝑚𝑚𝑚𝑚   and 

𝑆𝑆𝑆𝑆: 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿 ⟶ 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿 by 

𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓 =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇†𝑓𝑓𝑓𝑓 = ∑⟨𝑓𝑓𝑓𝑓|𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩
𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1
𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘. 

Hence 𝑇𝑇𝑇𝑇†(𝑆𝑆𝑆𝑆−1𝑓𝑓𝑓𝑓) = {⟨𝑆𝑆𝑆𝑆−1𝑓𝑓𝑓𝑓|𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩}𝑘𝑘𝑘𝑘=1
𝑚𝑚𝑚𝑚  . 

Therefore 
{⟨𝑆𝑆𝑆𝑆−1𝑓𝑓𝑓𝑓|𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩}𝑘𝑘𝑘𝑘=1

𝑚𝑚𝑚𝑚 ∈ 𝑅𝑅𝑅𝑅𝑇𝑇𝑇𝑇† . 
Since 𝑆𝑆𝑆𝑆−1 is self adjoint, 

{⟨𝑆𝑆𝑆𝑆−1𝑓𝑓𝑓𝑓|𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩}𝑘𝑘𝑘𝑘=1
𝑚𝑚𝑚𝑚 = {⟨𝑓𝑓𝑓𝑓|𝑆𝑆𝑆𝑆−1𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩}𝑘𝑘𝑘𝑘=1

𝑚𝑚𝑚𝑚 . 
Hence 
(3.16) {⟨𝑓𝑓𝑓𝑓|𝑆𝑆𝑆𝑆−1𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩}𝑘𝑘𝑘𝑘=1

𝑚𝑚𝑚𝑚 ∈  𝑅𝑅𝑅𝑅𝑇𝑇𝑇𝑇† . 
   
Now we can write, 

{𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1
𝑚𝑚𝑚𝑚 = {𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1

𝑚𝑚𝑚𝑚 −{⟨𝑓𝑓𝑓𝑓|𝑆𝑆𝑆𝑆−1𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩}𝑘𝑘𝑘𝑘=1
𝑚𝑚𝑚𝑚  

+   {⟨𝑓𝑓𝑓𝑓|𝑆𝑆𝑆𝑆−1𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩}𝑘𝑘𝑘𝑘=1
𝑚𝑚𝑚𝑚  

From (3.15), (3.16) and lemma (3.14), it follows 
that 
 

∑|𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘|2
𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1
= ∑|⟨𝑓𝑓𝑓𝑓|𝑆𝑆𝑆𝑆−1𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩|2

𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1
 

                        +  ∑|𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘 − ⟨𝑓𝑓𝑓𝑓|𝑆𝑆𝑆𝑆−1𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩|2
𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1
 

 
 
Theorem (3.16) is one of the most important 
results about frames, and 

𝑓𝑓𝑓𝑓 = ∑⟨𝑓𝑓𝑓𝑓|𝑆𝑆𝑆𝑆−1𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩
𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1
𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘 = ∑⟨𝑓𝑓𝑓𝑓|𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩

𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1
𝑆𝑆𝑆𝑆−1𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘 

is called the frame decomposition. 
 
Note that if {𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1

𝑚𝑚𝑚𝑚 is a frame but not a 
basis,there exists non-zero sequences 
{𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1

𝑚𝑚𝑚𝑚 such that ∑ 𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚
𝑘𝑘𝑘𝑘=1 𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘 = 0.Thereby 𝑓𝑓𝑓𝑓 ∈

𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿can be written as 

   𝑓𝑓𝑓𝑓 = ∑⟨𝑓𝑓𝑓𝑓|𝑆𝑆𝑆𝑆−1𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩
𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1
𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘 + ∑ 𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘

𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1
𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘 

= ∑(⟨𝑓𝑓𝑓𝑓|𝑆𝑆𝑆𝑆−1𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩
𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1
+ 𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘)𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘 

 
showing that 𝑓𝑓𝑓𝑓 has many representations as 
superposition of the frame elements. 
 
Corollary 3.17.Assume that {𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1

𝑚𝑚𝑚𝑚  is 
a basis for 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿.Then there exists a unique 
family {𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1

𝑚𝑚𝑚𝑚  in 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿 such that 

 
(3.17)    𝑓𝑓𝑓𝑓 = ∑ ⟨𝑓𝑓𝑓𝑓|𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘⟩𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1 𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘, 
for all 𝑓𝑓𝑓𝑓 ∈  𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻

𝐿𝐿𝐿𝐿. In terms of the frame 
operator,{𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1

𝑚𝑚𝑚𝑚 = {𝑆𝑆𝑆𝑆−1𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1
𝑚𝑚𝑚𝑚 . 

Furthermore⟨𝑓𝑓𝑓𝑓𝑗𝑗𝑗𝑗|𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘⟩ = 𝛿𝛿𝛿𝛿𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘. 
 

4. CONCLUSION 
 

We conclude by giving a perceptive clarification 
of why frames are important in signal 
transmission. Let us assume that we want to 
transmit the signal 𝑓𝑓𝑓𝑓 belonging to a left 
quaternion Hilbert space from a transmitter 𝒜𝒜𝒜𝒜 to 
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a receiverℛ. If both 𝒜𝒜𝒜𝒜 and ℛ have knowledge of 
frame {𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1

𝑚𝑚𝑚𝑚 for 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿, this can be done if 𝒜𝒜𝒜𝒜 

transmits the frame coefficients {⟨𝑓𝑓𝑓𝑓|𝑆𝑆𝑆𝑆−1𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩}𝑘𝑘𝑘𝑘=1
𝑚𝑚𝑚𝑚 ; 

based on knowledge of these numbers, the 
receiver ℛ can reconstruct the signal 𝑓𝑓𝑓𝑓 using the 
frame decomposition. Now assume that ℛ 
receives a noisy signal, meaning a 
perturbation  {⟨𝑓𝑓𝑓𝑓|𝑆𝑆𝑆𝑆−1𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩ +  c𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1

𝑚𝑚𝑚𝑚 of the correct 
frame coefficients. Based on the received 
coefficients, ℛ will assert that the transmitted 
signal was  
 

∑(⟨𝑓𝑓𝑓𝑓|𝑆𝑆𝑆𝑆−1𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩ + 𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘)
𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1
𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘 

 

        = ∑⟨𝑓𝑓𝑓𝑓|𝑆𝑆𝑆𝑆−1𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘 + ∑ 𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘

𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1

𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1
𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘 

 
                    = 𝑓𝑓𝑓𝑓 + ∑ 𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘

𝑚𝑚𝑚𝑚
𝑘𝑘𝑘𝑘=1 𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘.  

 
this differs from the correct signal 𝑓𝑓𝑓𝑓 by the noise 
∑ 𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘

𝑚𝑚𝑚𝑚
𝑘𝑘𝑘𝑘=1 𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘.Minimizing this noise for various 

signals with different types of noises has been a 
hot topic in signal processing. We shall touch 
this issue in the future. For now, if {𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1

𝑚𝑚𝑚𝑚  
is over complete, parts of the noise contribution 
might add up to zero and cancel. This will never 
happen if {𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1

𝑚𝑚𝑚𝑚  is an orthonormal basis. In 
that case 

‖∑ 𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘

𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1
𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘‖

2

= ∑|𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘|2
𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1
 

so each noise contribution will make the 
reconstruction worse. 
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a receiverℛ. If both 𝒜𝒜𝒜𝒜 and ℛ have knowledge of 
frame {𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1

𝑚𝑚𝑚𝑚 for 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿, this can be done if 𝒜𝒜𝒜𝒜 

transmits the frame coefficients {⟨𝑓𝑓𝑓𝑓|𝑆𝑆𝑆𝑆−1𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩}𝑘𝑘𝑘𝑘=1
𝑚𝑚𝑚𝑚 ; 

based on knowledge of these numbers, the 
receiver ℛ can reconstruct the signal 𝑓𝑓𝑓𝑓 using the 
frame decomposition. Now assume that ℛ 
receives a noisy signal, meaning a 
perturbation  {⟨𝑓𝑓𝑓𝑓|𝑆𝑆𝑆𝑆−1𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩ +  c𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1

𝑚𝑚𝑚𝑚 of the correct 
frame coefficients. Based on the received 
coefficients, ℛ will assert that the transmitted 
signal was  
 

∑(⟨𝑓𝑓𝑓𝑓|𝑆𝑆𝑆𝑆−1𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩ + 𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘)
𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1
𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘 

 

        = ∑⟨𝑓𝑓𝑓𝑓|𝑆𝑆𝑆𝑆−1𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘⟩𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘 + ∑ 𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘

𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1

𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1
𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘 

 
                    = 𝑓𝑓𝑓𝑓 + ∑ 𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘

𝑚𝑚𝑚𝑚
𝑘𝑘𝑘𝑘=1 𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘.  

 
this differs from the correct signal 𝑓𝑓𝑓𝑓 by the noise 
∑ 𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘

𝑚𝑚𝑚𝑚
𝑘𝑘𝑘𝑘=1 𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘.Minimizing this noise for various 

signals with different types of noises has been a 
hot topic in signal processing. We shall touch 
this issue in the future. For now, if {𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1

𝑚𝑚𝑚𝑚  
is over complete, parts of the noise contribution 
might add up to zero and cancel. This will never 
happen if {𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘}𝑘𝑘𝑘𝑘=1

𝑚𝑚𝑚𝑚  is an orthonormal basis. In 
that case 

‖∑ 𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘

𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1
𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘‖

2

= ∑|𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘|2
𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1
 

so each noise contribution will make the 
reconstruction worse. 
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