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Abstract: Most low-traffic roads are primarily
thin chip seal surfacing with an unbound
granular base and subgrades layers. This
paper describes the development of a 3-D
numerical model of a low-traffic road. The
numerical model was built using the finite
element modelling. A 3-D chip seal surface
was constructed using X-ray tomography scans
of multiple layer seal samples removed from a
road. Stones particles were modelled as rigid
body; the bitumen was modelled as deformable
using a viscoelastic constitutive model. A
stress dependent nonlinear anisotropic material
model was used for the granular base and
subgrade. The material parameters for the
bitumen and granular layers are estimated
using inverse modelling technique from ex-
perimental measurements. The inverse model
is formulated as a non-linear least squares
minimization problem coupled with a finite
element model. It is done by constructing
an iterative procedure using an optimisation
routine in MATLAB’s and at each iteration,
finite element problem is solved.
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1 Introduction

Chip seals surfacing provide low cost roads par-
ticularly in low traffic locations. Chip loss,
cracks and permanent deformation of road lay-
ers reduces its strength and can result in traf-
fic safety concerns. This problem may become
more apparent with increasing axle loading and
repetitions. Therefore, the assessment of the
optimal cost and serviceability of a road design
problem has to be studied carefully. This can be
done efficiently by modelling the road response
using numerical methods. The accuracy associ-
ated with modelling the road response is highly
related to the material model used especially
its material parameter values. Inaccuracy as-
sociated with model parameter values can lead

to differences between estimated and actual be-
haviour.

The numerical model of a road response sim-
ulation describes the mechanical response of a
material under load. It could be used during the
design process to study the effect of factors such
as binder type, aggregate geometry and traffic
stress on likely seal performance.

The novel concept of this paper is to demon-
strate the work undertaken to construct a 3D
chip seal surfacing road FEM using data derived
from a real road surface and to exhibit method-
ologies for estimating material constants of bi-
tumen and granular layers. In the present work
the demonstration process is categorized into
three parts. In the first part the construction
of a 3-D finite element road model with a chip
seal surfacing is considered. A 3-D chip layer
was constructed using X-ray tomography scans
of multiple layer seal samples removed from a
highway. The preliminary development of this
study is already reported in one of our previous
paper [2]. In the second part the estimation of
unknown parameters of bitumen using exper-
imental data is demonstrated. It is based on
dynamically loaded ball bearing assembly with
the least square minimization technique and fi-
nite element modelling. In the third part the
process for estimation of basecourse and sub-
grade layer parameters from falling weight de-
flectometer data is demonstrated. The inspira-
tion behind the methodology is based on the
work of [3].

2 Construction of finite ele-
ment model of road

The geometry of the cross-section of an exem-
plary road cross-section can be seen in Figure
1. The geometry contains three layers, chip seal
surface, base course, and subgrade. The chip
seal layer contains stones and bitumen. Stones
are assumed to be rigid body and bitumen was
assumed to be viscoelastic. Both basecourse
and subgrade are assumed to be deformable
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with anisotropic material properties. The pur-
pose of this section is to built a 3D finite element
model similar to one given in Figure 1. The re-
search strategy and methodologies are divided
into three stages.

Figure 1: Road cross-section

In the first stage, the chip surfacing for the
finite element model was built. It was done by
recombining x-ray tomography cross sections of
a real multiple layer chip seal core. This is ar-
rived through several steps and based on the
techniques available in literature for asphalt mix
[4], [7].

1. Removed Seal sample from a highway as
shown in Figure 2.

Figure 2: Original core

2. X-ray tomography scans of multiple layer
seal samples were taken at 1.0mm intervals
and converted to grayscale images. Four of
these images are shown in Figure 3.

3. A small section of the sample was selected
to process as a 3D model. This was done
in MATLAB by setting all pixels outside a
certain domain as black.

4. The next step is to use the watershed func-
tion to try and segment the chip and then
to create an image stack for each individual
chip as shown in Figure 4.

Figure 3: X-ray tomography scans

Figure 4: Result obtained from watershed
transformed function

5. Once an image stack is prepared and ready
to go, it can be transferred into an STL file
as shown in Figure 5.

Figure 5: (A) Model chips and derived from X-
ray tomography data

In the second step, the general purpose fi-
nite element program ABAQUS is used to build
a complete model as shown in Figure 6. The
model contains three layers. The dimension of
the top chip seal layer is 60 mm × 80 mm ×
10 mm. The bottom two layers are granular
materials with 300 mm deep basecourse and
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Figure 6: Finite element model

1000 mm deep subgrade materials. The chip
was modeled as a rigid body. Bitumen proper-
ties were approximated using hyperelastic and
viscoelastic material models. Hyperelasticity
refers to materials which can experience large
elastic strain that is recoverable. The deforma-
tion behaviour of these materials are often mod-
elled by the Mooney–Rivlin model. The strain
energy density function for an incompressible
Mooney-Rivlin material is

W = C1

(
Ī1 − 3

)
+ C2

(
Ī2 − 3

)
(1)

where C1 and C2 are empirically determined
material constants and Ī1 and Ī2 are the first
and the second invariant of the deviatoric com-
ponent of the left Cauchy-Green deformation
tensor.

The stress function of a viscoelastic material
is given in an integral form. Within the context
of small strain theory, the constitutive equa-
tion for an isotropic viscoelastic material can
be written as:

σ =

∫ t

0

2G (t− τ)
de

dτ
dτ+I

∫ t

0

2K (t− τ)
d∆

dτ
dτ

(2)

G(t) = G∞ +

nG∑
i=1

Gi exp

(
− t

τGi

)

K(t) = K∞ +

nK∑
i=1

Ki exp

(
− t

τKi

)

where σ Cauchy stress, e deviatoric part of the
strain, ∆ volumetric part of the strain, t cur-
rent time, τ past time, I unit tensor, Gi shear
elastic moduli, Ki bulk elastic moduli, τGi , τKi
are relaxation times for each component.

The bottom two layers are granular mate-
rials. Granular materials make up a discon-
tinuous particulate medium physically and its
resilient performance is strongly influenced by
the applied wheel load. The resilient behaviour

of granular material is influenced by stress
level, density, grain size, aggregate type, par-
ticle shape, moisture content, and number of
load applications. There are several mathemat-
ical models have been developed using different
stress components. One of the most popular
model was developed by Uzan and is given by
[6], [1]

Mr = k1P

(
θ

P

)k2 (τoct
P

+ 1
)k3

(3)

where

θ = σ1 + σ2 + σ3

τoct =
1

3

√
(σ1 − σ2)

2
+ (σ2 − σ3)

2
+ (σ3 − σ1)

2

P = 100 kPa

Mr resilent modulus, k1, k2, k3 are constants,
σ1, σ2 and σ3 are principal stress.

The bottom boundary of the subgrade was
fixed in all three directions. The side planes
of the subgrade, basecourse and chip seal
layers were free to move in all directions.
The bitumen-chip, bitumen-basecourse and
basecourse-subgrade interfaces were fixed (i.e.
perfect adhesion).

The finite element model, which is capable of
describing the behaviour of road deformation is
built now. But several input data such as ma-
terial constants are unknown. Laboratory and
field experiments were conducted to estimate
the constants appearing in the material models.
The next two sections describes the equipment,
trial procedure and estimation methodologies.

3 Experimental Measure-
ments

3.1 Steel sphere experiments

To determine the hyperelastic and viscoelastic
parameters in the bitumen material model, ex-
perimental measurements were made using the
apparatus shown in Figure 7. The 10 spheres
(radius 25 mm) surrounding the central sphere
were fixed. The central sphere was attached to
the ram of a tensile testing machine and was
lowered into position leaving a very small gap
between it and the surrounding spheres. The as-
sembly was filled with bitumen to a point half
way up the top layer of spheres. The central
sphere was then moved upwards and the subse-
quent force and displacement against time data
recorded as shown in Figure 8. Tests were con-
ducted at a loading rate of 0.4 kNs−1. The idea
here was to provide a model of a stone particle
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Figure 7: Steel ball assembly

in a seal layer with a wide range of bitumen film
thicknesses.

Figure 8: Force, displacement against time

3.2 FWD measurement

Figure 9: Falling weight deflectometer measure-
ments

A falling weight deflectometer (FWD) is

Surface deflection
Distance from Vertical
center (mm) displacement (mm)

0 1.062
200 0.738
450 0.282
600 0.165
900 0.079
1800 0.038

Table 1: Measured FWD deflection data

shown in Figure 9. It is a testing machine used
by roading engineers to estimate the physical
properties of road. The FWD is designed to
impart a load pulse to the road surface. The
FWD applies an impulsive load to the road sur-
face and load is about 566 kPa upon a 300 mm
diameter plate and a load impulse duration of
25 ms. The response of the road system is mea-
sured in terms of vertical deformation, or deflec-
tion, over a given area using geophones. The re-
sulting vibration signal through the road is then
received by a number of geophones set down lin-
early on the road in a particular pattern. Thus,
the shape of deflection bowl is obtained. Ta-
ble 1 shows the road deflection testing measure-
ments for road surface comprised of basecourse
and subgrade materials at offsets points 0 mm,
200 mm, 450 mm, 600 mm, 900 mm, 1800 mm
horizontally. This was measured under 42 kN
load (equivalent to 595 kPa).

4 Parameter estimation

The intention of parameter estimation proce-
dure is the extraction of model constants from
measured experimental data. It is a discipline,
which offers tools for the competent use of
data in estimation of constants appearing in the
models. The measured values at certain obser-
vation points are the prime unknown in the for-
ward problem. The material constants are un-
known in the inverse problem. The aspiration
here is to calculate the best estimates of these
constants. This problem is known mathemati-
cally as an inverse problem and can be seen as
an optimization problem whereby the objective
function to minimize is the differences between
the measured and the estimated values.

The first requirement in attempting to nu-
merically calculate the material constants de-
scribed above, is to be able to model accurately
the forward problem, i.e. that of finding the
stress, strain and deformation profile for a given
set of material parameters and loading condi-
tions.

4
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4.1 Bitumen

In this section the finite element program has
been used to simulate the same experiment de-
scribed in section 3.1. The finite element model
is shown in Figure 10 and its dimensions are:
Diameter of sphere= 50 mm, Outside diameter
of container 177 mm, wall thickness 25 mm and
wall height=110 mm. The steel spheres are as-
sumed to be rigid and made of H13 steel. No ro-
tation or translation were permitted on spheres
inside the bitumen and the top sphere was al-
lowed to move on the vertical directions. The
bottom of the container was constrained for all
degrees of freedom. Perfect adhesion between
the spheres and bitumen is assumed. The top
sphere was pulled upwards with 0.4 kN/s and
the displacement changes against time was cal-
culated.

Figure 10: FEM model of ball bearings

The calculation process begins by assuming
randomly chosen initial values for the constants
appearing in the hyper elastic and viscoelastic
models. It is an iterative process, and improved
the original estimates are by minimizing the
sum of the square of the differences between ex-
perimental values and the corresponding FEM
calculated result i.e. minimising the function
f(p):

f (p) =

√√√√ 1

n

n∑
k=0

(
dFEM
i (p)− dexpi

dexpi

)2

(4)

where p is the vector of constants to be esti-
mated, n is the number of experimental values,
dexpi is the i−th experimental value and dFEM

i

is the i−th FEM value. For the optimal fit p
must be varied to minimise f .

The whole model is built in MATLAB plat-
form. A PYTHON program is used to com-
municate between MATLAB and finite element

program Abaqus. The minimization process is
implemented using MATLABs lsqnonlin func-
tion which uses the Levenberg-Marquardt algo-
rithm.

The non-linear objective function given above
may have more than one minimum. Therefore,
the solution process should include finding the
global minimum. To deal with these problems,
first all or most of the local minima of objec-
tive function at a larger interval were estimated.
Then the lowest value of the minima was picked.
In the next step the minimum obtained from the
previous step was used as the starting value to
solve the problem.

4.2 Basecourse and Subgrade

In this section the finite element program has
been used to set up the forward model described
in section 3.2 in three dimensions. To reduce
the computational effort by making use of the
symmetry in the geometry and loading only the
quarter of the model is considered as shown in
Figure 11. The dimension of FEM model is
2 m× 1.5 m× 1.3 m. The bottom of the model
was constrained for all degrees of freedom. Lat-
eral displacements ux and uy are restrained in
X and Y directions, respectively, along the ver-
tical planes (ux, uy = 0). The model contains
two layers and assumed to be a deformable with
anisotropic material properties. The basecourse
and subgrade layers are 300 mm, 1000 mm
height respectively and their material proper-
ties are modelled by equation 3.

Figure 11: FEM model of basecorse and sub-
grade

Similar to the procedure described in sec-
tion 4.1, the modelling procedure of the forward
problem was started by randomly chosen mate-
rial parameter values of Equation 3 and then
the deflection at points 0, 200, 300, 450, 600,
900 and 1800 mm were compared with their re-
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spective measured values. This procedure was
repeated by changing material constants until
the differences between the measured and simu-
lated deflection data are very small as in section
4.1.

5 Results and Discussion

In this section, numerical calculations are pre-
sented to demonstrate the modelling process
and evaluate the accuracy of the model pre-
dictions. To do so, the experimental data ob-
tained from the experiment described in section
3.1 and 3.2 for two different loading conditions
are considered and compared with the model
predictions.

Figure 12: Cross-sectional view of FEM-Verical
strain

Figure 12 shows the cross-sectional view of
vertical stress contours when the simulation has
been continued sufficiently for some time. Fig-
ure 13A shows the displacement-time experi-
mental data at a loading rate of 0.4 kNs−1

used to fit the model constants in Equation 4
along with the resulting simulation. The pro-
cedure produced good agreement between mea-
sured and predicted data. The derived model
constants were also validated by simulating ex-
periments at different loading rates and com-
paring to experimental data. Figure 13B com-
pares simulation results to experimental data at
a loading rate of 0.8 kNs−1.

Figure 14 shows the contour plot of vertical
displacement under a FWD load impulse. Fig-
ure 15 shows the FWD data used to fit the
model constants in Equation 5 along with re-
sulting vertical surface deflection of road FEM.
The procedure produced good agreement be-
tween measured and estimated data. The de-
rived model constants were also validated by
simulating experiments at different FWD load-
ing cases and comparing to measured data. Fi-
nally a number of simulations were run to ex-
amine the effect of loading in the chip seal layer.

Figure 13: (A) Comparison of experimental val-
ues used for parameter fitting and the result-
ing simulation, (B) Comparison of experimen-
tal values with simulation results at a different
loading rate.

Figure 14: Contour plot of vertical deflection.

One such case is shown in Figure 16, which is
the contour plot of horizontal strain when a load
was applied. The effect of chip size, embedment
depth, variations in the chip seal layer height,
variations in loading magnitude and directions
on the model predictions will be studied and
reported in our future publications.
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Figure 15: Calculated and measured strain val-
ues.

Figure 16: Cross section showing horizontal
stains. Tensile strains are positive.

6 Summary and Conclusion

The intention of this paper is to demonstrate
development of a 3D finite element model of a
low traffic road. The development process is
classified into three parts: (a) building a fem
model and (b) estimation of material constants
of bitumen, (c) estimation of material constants
of basecourse and subgrade. The use of x-ray
tomography of a real chip seal core was used
in construction of a surface layer of finite el-
ement model and a stress dependent nonlin-
ear anisotropic material model was used for the
granular base and subgrade.

The material parameter estimation is based
on a nonlinear least squares coupled with finite
element techniques. Nonlinear least squares
minimization is done by constructing an iter-
ative procedure using MATLAB’s inbuilt func-
tion lsqnonlin and at each iteration, finite el-
ement solutions to the deformation are solved
using the ABAQUS Finite element program.

An examples given in section 5 demonstrates

how the model is able to determine the con-
stants appearing in the model and predict the
deformation behaviour. The results from these
examples suggest that the inverse model de-
scribed above is capable of estimating the con-
stants to a reasonable degree of accuracy.
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ABSTRACT. Parallel to the quantization of 
the complex plane, using the canonical 
coherent states of a right quaternionic Hilbert 
space, quaternion field of quaternionic 
quantum mechanics is quantized and using the 
quantization the position and momentum 
operators are obtained by us in [1]. In this 
article, we show that the right quaternionic 
canonical coherent states saturate the 
Heisenberg uncertainty relation and thereby 
they form a set of intelligent states and also we 
show that they are a set of minimum 
uncertainty states.  
 
Key words: Quaternion, Quantization, 
Coherent states, Heisenberg uncertainty. 
 

 
1. Introduction  

Quantization is commonly 
understood as the transition from classical 
to quantum mechanics. One may also say, 
to a certain extent, quantization relates to a 
larger discipline than just restricting to 
specific do-mains of physics. In physics, 
the quantization is a procedure that 
associates with an algebra 𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 of classical 
observables an algebra 𝐴𝐴𝐴𝐴𝑞𝑞𝑞𝑞 of quantum 
observables. The algebra 𝐴𝐴𝐴𝐴𝑞𝑞𝑞𝑞 is usually 
realized as a commutative Poisson algebra 
of derivable functions on a symplectic (or 
phase) space𝑋𝑋𝑋𝑋. The algebra 𝐴𝐴𝐴𝐴𝑞𝑞𝑞𝑞 is, 
however, non-commutative in general and 
the quantization procedure must pro-vide a 
correspondence 𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ⟼ 𝐴𝐴𝐴𝐴𝑞𝑞𝑞𝑞 ∶  𝑓𝑓𝑓𝑓 ⟼ 𝐴𝐴𝐴𝐴𝑓𝑓𝑓𝑓 . 
 

Most physical quantum theories 
may be obtained as the result of a canonical 
quantization procedure which simply 
replaces the classical variables by quantum 
observables. 

 
However, among the various quantization 
procedures available in the literature, the 
coherent state quantization (CS 
quantization) appear quite arbitrary 
because the only structure that a space X 
must possess is a measure. Once a family 
of CS or frame labeled by a measure space 
X is given one can quantize the measure 
space X. Various quantization schemes and 
their advantages and drawbacks are 
discussed in detail, for example, in [2, 3, 4, 
5]. 
  

Due to the non commutativity of 
quaternions, quaternionic Hilbert spaces 
are formed by right or left multiplication of 
vectors by quaternionic scalars; the two 
different conventions give isomorphic 
versions of the theory. Quaternions can 
always be represented, through symplectic 
component functions, as a pair of complex 
numbers and thereby quaternions possess a 
symplectic structure. However, the 
quaternionic quantum mechanics is 
inequivalent to complex quantum 
mechanics. In analogy with the complex 
quantum mechanics (CQM), states of 
quaternionic quantum mechanics (QQM) 
are described by vectors of a separable 
quaternionic Hilbert space and observables 
in QQM are represented by quaternion 
linear and self-adjoint operators [6]. 
 

The CS quantization in the CQM is 
a well-known and well-studied problem. 
Using the method of CS quantization, 
various phase spaces such as complex 
field, complex unit 


