
A Community Based Routing Algorithm for Mobile Opportunistic Networks
D. Fernando & Dr. K. Thabotharan

Department of Computer Science, Faculty of Science, University Of Jaffna

.

• Opportunistic networking is a kind of delay-tolerant networking

in which a number of wireless mobile nodes that communicate

with each other, without the support a network infrastructure.

• Opportunistic networking uses locally available wireless

technologies such as Bluetooth for pair-wise data forwarding

hoping that the data will ultimately reach the destination.

• Intermittent connectivity and long delays in data delivery are

inherent properties of this kind of opportunistic networking and

they pose us challenges in data delivery.

What is the problem with the existing methods?

• The existence of communities among larger groups of people

presents us a use case for opportunistic networking where

content of interest could be exchanged among the members of

communities.

• In such communities members are not exactly fixed to a single

community and are usually connected to several communities

based on their interests.

• Forwarding and routing content of interest among these

communities should take care of the interests of the members of

communities and other inherent properties of opportunistic

networking.

• Therefore a more efficient routing algorithm that can overcome

the inherent problems of such a set up is needed.

In this work we propose a community-based forwarding approach

which we name as SWift routing algorithm (SW algorithm) that can

be used to send messages among the community members in an

opportunistic manner. Our simulation-based results show that our

proposed algorithm outperforms three well-known algorithms in

the field under varying network conditions.

Crest of

the

Institution

For our simulation based experiments we use the ONE simulator to

implement our proposed SW routing algorithm, Spray and wait,

Direct Delivery and the Wave algorithm and we ran our

experiments with selected simulation parameters listed in Table.

During the experiments we also varied the such as message TTL

from 300 to 500 minutes, message size from 400 KB to 1MB to

700 KB to 1MB, and the buffer size from 5MB to 7MB. We have

collected the test results in trace files and have analyzed them for

their performance.

For the comparison of our proposed SW algorithm along with the three

well known algorithms we use the following performance metrics:

The proposed SW routing algorithm is a multi-copy algorithm and

it ensures that when a node receives a message from its neighbor,

the node forwards the message only to half the number of its

neighbors compared to the previous node which has just forwarded

the message to this node. By doing this it ensures that the message

is not forwarded infinite number of times among the nodes in the

network. At the same time when a message is received the

algorithm also compares whether the current time is greater than

the messages total accept time. This Total Accept Time (TAT) is

defined as,

TAT = MAST + MCT + MAT

where,

MAST
• (Message Accept Start Time) is the time when a new message is accepted.

MCT

• (Message Checking Time) is the amount of time a node will reject an incoming
message it has already received.

MAT

• (Message Accept Time) is the amount of time that is calculated by adding the
message generate time with the message time to live and the message check
time.

• Our SW routing algorithm’s test results show that the outperforms

three existing algorithms when compared with overhead with

message TTL, Message size and Buffer size.

• In some of the case the proposed routing algorithm exhibits a

steady performance when compared with the three algorithms.

• SW routing algorithm can use to promote business ideas based on

customer’s interest. We can send promotion messages among

community members.

• As a future work we would like to improve the proposed algorithm

for larger communities of people.

• Therefore different kinds of communities and their interests vary

greatly, and the algorithm accurately takes care of routing in a

more efficient manner.

When a node generates a message, it also determines the number of
neighbors the message (which we name as the variable count) needs to
be forwarded.

The node then passes the generated message to its neighbor along with
the variable count.

If the receiving node is interested in this message it can view this
message and before can forwarding the message to its neighboring.

If the node is not interested it can estimate the new value of the variable
count by dividing current value of it by two and then can forward the
message to its neighbor.

At the time of forwarding the node compares the value of the Total
Accept Time (TAT) with the current time (message get time plus the
duration taken by the message to be sent from the beginning up to this
step) and if the current time is greater than the TAT then the message is
removed from forwarding.

Otherwise, it the message gets forwarded.

Overhead Ratio: The overhead ratio reflects how many redundant packets are relayed to deliver one packet.

Overhead Ratio = (N - D)=D

(where N is the number of messages forwarded by a node, and D is the number of messages that are delivered to

their destinations.)

Delivery probability: The delivery probability is the probability between the total number of messages delivered to their
destinations and the total number of messages created at the source node.

Delivery ratio = P=T

(where P is a number of messages delivered to the destination and T is a number of messages made.)

Average latency: Average latency is the time between creating messages and receiving messages of a destination.

Average latency= (where n is the number of messages delivered to their destination, Ri is the moment when a
message i reaches to its destination, and Si is the moment the message i is created.)

Parameters Values

Simulator The ONE

Parameters Simulation Time 2532 sec

Message TTL 300 min

Buffer size 5 MB

Message size (Event size) 400kB - 1MB

Movement Model Shortest path map based

Movement

Community groups 6

Multi copies 10

MessageCheckingTime 100 min

MessageAcceptTime 200 min

Reports Message Stats Report

Delivered Messages Report

SW algorithm performs closer to Direct delivery algorithm. These two

perform better when compared to the Wave algorithm.

Figures Fig. 7 to Fig. 9 show a higher delivery probability in Spray

and Wait, where as the SW algorithm shows a steady delivery

probability in these cases. The SW and the Direct delivery algorithm

perform better when compared to the Wave algorithm. In overall, the

SW algorithm outperforms the other three algorithms for the overhead

with MessageTTL, Message size and Buffer size.

Since SW sends messages based on the node’s interest, it was able to

achieve this. We were also able to observe that the SW algorithm

always shows a better performance than the Wave algorithm in all the

test cases.

Our SW algorithm uses the following design principle:

Figures Fig. 1 to Fig. 3 show the results of comparison of message

overhead with MessageTTL, Message size and Buffer size of Spray and

Wait, Direct delivery, Wave and the SW protocols. When comparing the

above four, our results show that the overhead of SW and Direct delivery

are better than Wave, Spray and wait. The Direct delivery and the SW

algorithm both get zero overhead ratio with MessageTTL, Message size

and Buffer size. Compared to other algorithms, the SW algorithm shows

the best performance.

Figures Fig. 4 to Fig. 6 show minimum latency with MessageTTL,

Message Size and Buffer size in Spray and wait algorithm.

