

SENTIMENT ANALYSIS ON TAMIL TEXTS USING K-MEANS AND K-NEAREST NEIGHBOR

1 INTRODUCTION

Sentiment Analysis is an application of Natural Language Processing which identifies and categorises the opinions into positive or negative. In our model,

> Bag of Words (BoW) and fastText vectors are used to represent features. These features are clustered using K-means clustering and the cluster centers are used to build the Sentiment Analysis model using K-Nearest Neighbour (K-NN).

BoW is used to represent the number of times a word appears in a document. fastText treats each word as composed of character ngram. The vector for a word is made of the sum of the character ngram. Each word is represented using a 300 dimension vector.

4 Methodology

Three models are built using two types of feature vectors: *BoW* and *fastText*. *UJ_Corpus_Opinions* corpus is used to train and test these three models.

Model1: In this model K-NN is used as the classifier. K-NN is trained and tested on UJ_Corpus_Opinions corpus. Accuracy of this model is evaluated for different number of neighbours Kn in K-NN.

Model2: In this model feature vectors of training set are clustered using K-means with various number if clusters Km and the cluster centers are used to train K-NN.

Model3: Training set is split into groups based on class label, and these feature vectors of these groups are created and clustered these groups separatly using K-means clustering. We have tested this approach with different values of Kn and Km.

7 REFERENCES

[1] E. Nivedhitha, S. P. Sanjay, M. Anand Kumar, and K. P. Soman. Unsupervised word embedding based polarity detection for tamil tweets. International Journal of Computer Technology and Applications (IJCTA), 9(10):4631–4638, 2016. [2] Shanta Phani, Shibamouli Lahiri, and Arindam Biswas. Sentiment analysis of the 6th Workshop on South and Southeast Asian Natural Language Processing (WSSANLP2016), pages 93–102, 2016. [3] Braja Gopal Patra, Dipankar Das, Amitava Das, and Rajendra Prasath. Shared task on sentiment analysis in indian languages (sail) tweets- an overview. In International Conference on Mining Intelligence and Knowledge Exploration, pages 650–655. Springer, 2015. [4] N. Ravishankar and R. Shriram. Corpus based sentiment classification of tamil movie tweets using syntactic patterns. IIOAB Journal: A Journal of Multidisciplinary Science and Technology, 8(2):172–178, 2017.

Sajeetha Thavareesan, Sinnathamby Mahesan sajeethas@esn.ac.lk, mahesans@univ.jfn.ac.lk

2 PROBLEM SPECIFICATION

The aim of this research is to build a suitable model with less number of training samples to perform Sentiment Analysis in Tamil text.

3 CONTRIBUTION

Constructed UJ_Corpus_Opinions corpus to tackle the inavailability of the opinion corpus, that contains 1518 positive and 1173 negative reviews and comments.

Proposed three models to perform Sentiment Analysis:

• Model1: Sentiment classification using K-NN • Model2: Sentiment classification using K-means clustering with K-NN • Model3: Sentiment classification using class-wise K-means clustering with K-NN

\bigcirc Results

Mo

Mo

Mo

Mo

Ta	able1:	Tests	results	of the	models	
~]		BoW			fastText	

401	BOM			Iastlext				68 —
UET	Accuracy	Kn	Km	Accuracy	Kn	Km	cy(%)	66 —
del1	59	1	_	66	1	-	curae	62
del2	61	1	10	67	1	10	Ac	60 —
del3	64	1	6	70	1	16		58 —

Test results of three models are listed in Table 1. 70 as the highest

6 DISCUSSION AND CONCLUSION

• We considered *Model1* as our base model and obtained 59% and 66% of accuracies for *BoW* and *fastText* feature vectors.

• We tested the models using different values of Km to check their influence in the accuracy and noticed that the accuracy increases with the values of Km.

• In *Model2* and *Model3* we used centroids as training set for K-NN and obtained better results compared with *Model1*. We obtained 61% and 67% of accuracies for *Model2* as we used centroids as training set of K-NN.

• *Model3* outperformed other two models as we used centroids of class-wice K-means clustering to train K-NN. It shows that class-wise clustering performs better than global clustering. Highest accuracy is found for *Model3* for both features BoW (64%) and *fastText* (70%). • High accuracy occurred with Kn=1 in K-NN for all three models.

• *fastText* as features gives better results than BoW for all Km.

• Furthermore, *Model3* outperformed the other models for all Km. Thus, *fastText* and class-wise clustering with increased number of clusters can be used to classify the sentiments expressed in the Tamil text.

Test Results – BoW	of the mod – fastText	els		
model1	model2	model3		
accuracy	Models is found	d for Λ	Iodel3.	