

Introduction

In this work, we propose a two stage approach to optimize the process of building visual codebooks with discriminative power and compactness in the classification of visual objects.

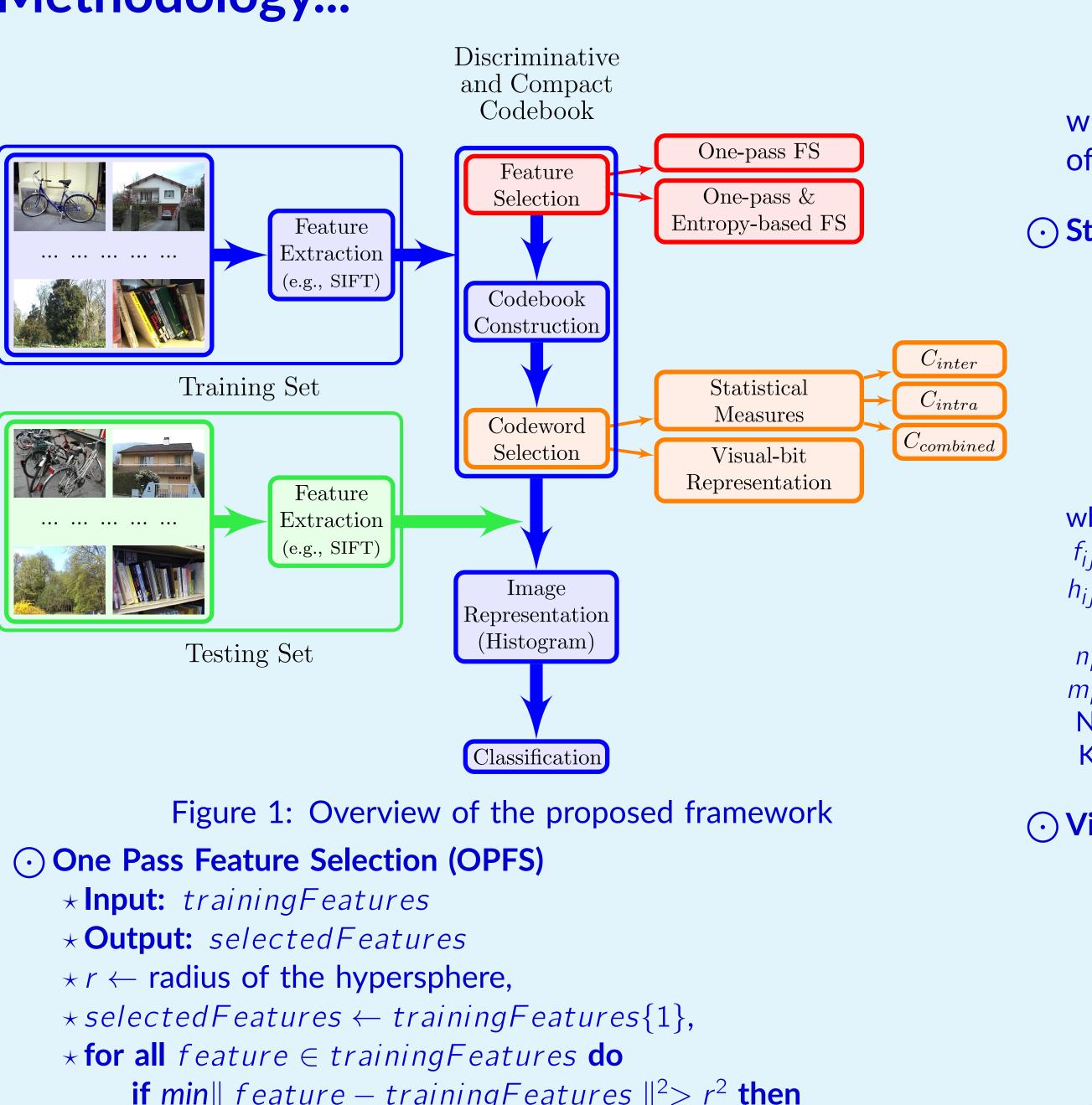
Contribution

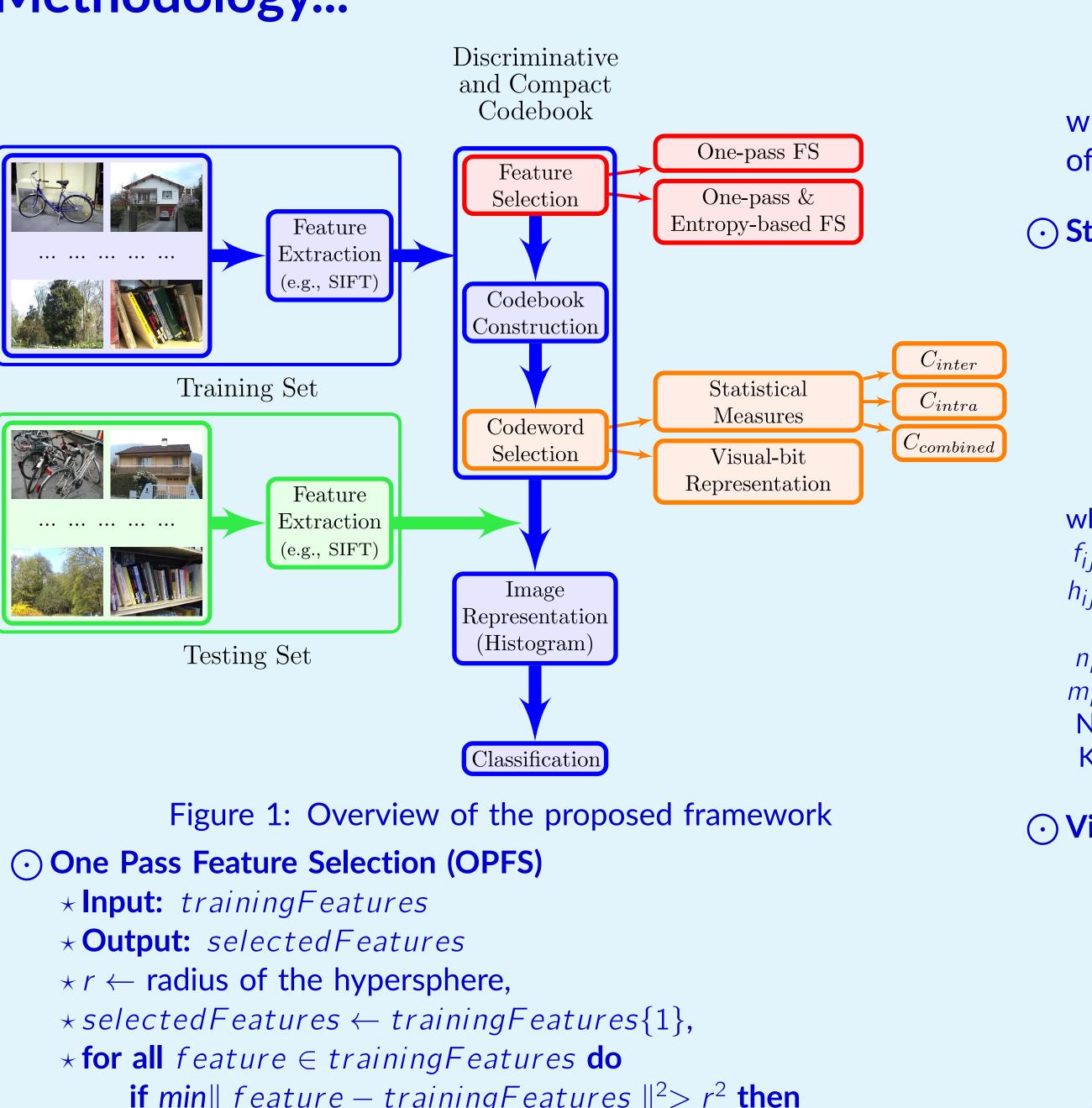
- $\odot A$ one-pass feature selection which is followed by an entropy-based feature selection approach is proposed to filter out ambiguous descriptors from initially extracted large descriptors set.
- Statistical-based measures and Visual-bit representation of codewords is proposed to select informative codewords from an initially constructed large codebook.

Methodology

- Unambiguous descriptors are selected from initially extracted SIFT descriptors using a one-pass feature selection (OPFS) method which is then followed by an entropy-based feature selection (EBFS) method to increase the discriminative power of the codebook.
- \odot A codebook is then constructed by means of K-means approach.
- \odot Indistinctive codewords are eliminated based on statistical measures (inter, intra, and combined category confidence) [1] or visual-bit representation of codeword to obtain a compact codebook [2].
- $\odot A$ histogram representation is created for each descriptor set of images and linear SVM classification algorithm is applied to those fixed-length feature vectors.

The overall framework of the proposed method is illustrated in Figure 1.





Appro

Tradit **OPFS OPFS** Tradit **OPFS** OPFS Tradit **OPFS OPFS** Tradit **OPFS** OPFS

An Efficient Approach for Patch-based Visual Object Classification

Veerapathirapillai Vinoharan and Amirthalingam Ramanan

Department of Computer Science, Faculty of Science, University of Jaffna {vvinoharan,a.ramanan}@univ.jfn.ac.lk

Methodology...

\mathbf{H}					
Create a new hypersphere of r such that,	whe				
	p_0				
$selectedFeatures \leftarrow \{selectedFeatures \cup feature\}$	SB				
end if	-				

enu n end for

Test Results

Comparison of average precision (AP) with number of training features and codebook size: Traditional BoF approach and proposed feature selection method with and without codeword selection (CS)

			1							•	N 7 •	
			Wit	hout	Statistical Measures with CS						Visual bit	
roach	Dataset	#Descriptors	CS		inter		intra		combined		with CS	
			CB	AP	CB	AP	CB	AP	CB	AP	CB	AP
itional	Xerox7	4,046,578	987	84.21	803	83.68	740	87.89	902	82.41	286	83.85
S		212,294	500	94.11	400	93.31	375	94.69	409	93.72	191	93.42
S+EBFS		172,006	500	94.04	400	93.40	375	94.79	406	93.41	201	94.13
itional	UIUCTex	4,543,590	1032	82.73	835	81.94	774	86.40	842	81.53	387	90.25
S		314,724	500	93.73	400	94.56	375	95.51	401	94.27	264	92.45
S+EBFS		157,094	500	94.17	400	92.95	374	94.08	404	92.88	257	93.48
itional	PASCAL	1,760,400	1049	71.78	847	72.41	787	73.71	953	71.99	421	71.69
S		245,327	500	72.93	400	73.16	375	73.47	405	73.91	262	72.88
S+EBFS		181,248	500	72.58	400	72.90	375	73.64	414	72.71	252	72.20
itional	Caltech101	5,659,137	925	84.72	742	82.87	694	84.80	850	82.30	336	84.32
S		393,024	500	86.01	400	85.17	375	85.97	408	85.83	289	85.48
S+EBFS		286,925	500	86.02	400	85.36	375	86.34	407	85.50	249	85.35

• Entropy-based feature selection (EBFS)

$$E(F) = -\sum_{i=0}^{255} p_i(F) \log_2 p_i(F)$$
(1)

where, $p_i(F) - \frac{|\{k|f_k=i\}|}{128}$, descriptors are treated as 128 samples of discrete random variable k in $\{0, 1, 2, \dots, 255\}$.

• Statistical Measures

$$C_{inter,i} = \sum_{j=1}^{N} max \left(\frac{f_{ij}}{n_i} - \frac{1}{m_i}, 0 \right)$$
(2)

$$C_{intra,i} = \frac{1}{\sum_{i=1}^{N} var(h_{ij})}$$
(3)

$$C_{combined,i} = \alpha C_{inter,i} + \beta C_{intra,i}; \ 0 \le \alpha, \beta \le 1$$
(4)

where,

 f_{ii} - number of training features in the i^{th} codeword & j^{th} category. h_{ii} - i^{th} codeword value of each image belonging to the j^{th} category in the BoF histogram domain, i = 1, 2, ..., K, & j = 1, 2, ..., N.

 n_i - is the total number of features in the i^{th} codeword.

 m_i - is the number of object categories in the *i*th codeword. N - is the number of object categories in classification.

K - is the size of the codebook.

• Visual-bit representation of codewords

$$h_i = \begin{cases} 1 : \text{if } C_i \ge t_0 \\ 0 : \text{otherwise} \end{cases} \forall i = 1, \dots, K$$
(5)

$$t_1 = \frac{\lambda p_0 + p_1}{(6)}$$

$$\lambda + 1$$

$$Compact_{CB} = \begin{cases} \text{eleminate } C_i &: \text{if } C_i \ge t_0 \\ \text{retain } C_i &: \text{Otherwise} \end{cases}$$
(7)

 p_0 is $min_{1 \le i \le K}(SB_i)$, p_1 is $max_{1 \le i \le K}(SB_i)$

- sum of visual bits associated with the *i*th codeword.

• - weighting parameter for a rare informative word.

 t_i - level of significant activation of a codeword in a codebook.

Experimental setup

 \odot For the image sets: Xerox7, UIUCTex, and Caltech101 we used 70% for training and 30% for testing from each class.

 \odot For PASCAL VOC 2007, the training was performed on the provided 'trainval' set and evaluated on the testing set.

 \odot We used SIFT descriptors in extracting the features from those image sets.

 \odot The codebook is constructed by using the K-means algorithm with K = 500 for all datasets.

 \odot The OVA-SVMs with RBF kernel was used for classification and the reported classification rates are of average precision (AP) [3].

Discussion and Conclusion

 \odot The proposed ideas in this paper are to generate a compact and discriminative codebook, that can be obtained by selecting representative keypoints and eliminating indistinctive codewords.

 \odot These processes not only reduces the overall computational complexity but also maintains the BoF model to be efficient with stable performance.

 \odot As a near future work we will incorporate another set of detector-descriptors: SURF and ORB.

References

[1] V. Vinoharan and A. Ramanan, "Keypoints and Codewords Selection for Efficient Bag-of-Features Representation", In IEEE International Conference on Future of Information and Communication Conference (FICC), pp. 203-208, 2018.

[2] T. Kirishanthy and A. Ramanan, "Creating Compact and Discriminative Visual Vocabularies Using Visual Bits", In Proceedings of the IEEE Digital Image Computing: Techniques and Applications (DICTA), pp. 258-263, 2015.

[3] K. H. Brodersen, C. S. Ong, K. E. Stephan, and J. M. Buhmann, "The Binormal Assumption on Precision-Recall Curves", In Proceedings of the International Conference on Pattern Recognition (ICPR), pp. 4263–4266, 2010.